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Warn-on-Forecast and Phased-Array Radar
• NOAA Warn-on-Forecast (WoF) Program

• Goal is to support NOAA’s watch-to-warning
operations for high-impact weather by providing 

probabilistic model guidance

• Warn-on-Forecast System (WoFS): storm-scale 

ensemble data-assimilation and prediction system

• Radar is the key observing platform for the WoFS

• PAR can scan a full volume every ~1 min                

(vs. ~5 min for WSR-88Ds)

• Previous OSSE studies show improved analyses 

and forecasts with more frequent radar DA

• What about for the WoFS?
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• 31 May 2013 “El Reno” EF3 tornado
• 2303–2344 UTC

• Multiscale data assimilation system
• GSI-EnKF and WRF
• 15- and 3-km domains
• 36 ensemble members
• Conventional observations only

• Storm-scale data assimilation system
• ARPS-EnKF and WRF
• 1-km horizontal grid spacing
• 36 ensemble members
• 3-km ensemble provides IC/BCs
• PAR observations only (Z and Vr)

• Forecasts launched from five analysis 
times.

Experiment Design
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Data Assimilation Experiments

• Assimilating PAR volumetric scans every 1, 3, 5, and 15 min

PAR1Cyc1

PAR5Cyc5

data frequency
cycling frequency

PAR3Cyc3

PAR15Cyc15

Current WoFS assimilates one volume of radar data every 15 min, similar to PAR15Cyc15.
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Assessment of Forecasts:
2-km MSL Reflectivity
• Subjective evaluation
• Probability of reflectivity > 35 dBZ
• MRMS reflectivity

• Objective verification
• ensemble Fractions Skill 

Score (eFSS)
• 35-dBZ threshold

Better

Worse

Worse

Better

eFSSref

area used to 
compute eFSS
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PAR1Cyc1

PAR5Cyc5

PAR3Cyc3

PAR15Cyc15

MRMS

Forecasts initialized at 2200 UTC 
After 15 min of DA Cycling

Forecasts initialized at 2300 UTC 
After 75 min of DA Cycling
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Ensemble Fractions Skill Score for All Forecasts

• PAR1Cyc1 performs the best, followed by PAR3Cyc3 and PAR5Cyc5
• PAR15Cyc15 performs the worst

Better Worse

Better
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Assessment of Forecasts:
2–5-km Updraft Helicity
• Subjective evaluation
• Probability of UH > 400 m2 s-2

• 90th percentile of UH
• MRMS azimuthal wind shear

• Objective verification
• Match UH objects within 40 km of 

azimuthal-wind-shear objects
• Contingency-table statistics

Yes No

Yes A(10) B(1)

No C(2) D(n/a)

Observed

Fo
re

ca
st

POD = A
A + C = 0.83

FAR = B
A + B = 0.09

BIAS = A + B
A + C = 0.92

CSI = A
A + B + C = 0.77
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Assessment of Forecasts:
2–5-km Updraft Helicity
• Subjective evaluation
• Probability of UH > 400 m2 s-2

• 90th percentile of UH
• MRMS azimuthal wind shear

• Objective verification
• Match UH objects within 40 km of 

azimuthal-wind-shear objects
• Contingency-table statistics
• Performance diagram

Better

Worse Underforecast

Overforecast

No Bias
CSI

Bias
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PAR1Cyc1

PAR5Cyc5

PAR3Cyc3

PAR15Cyc15

Forecasts initialized at 2200 UTC 
After 15 min of DA Cycling

Forecasts initialized at 2300 UTC 
After 75 min of DA Cycling
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Performance Diagram for All Forecasts
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• PAR1Cyc1 produces 3 of 
the top 5 best forecasts, 
including the best overall 
forecast



Performance Diagram for All Forecasts
• PAR1Cyc1 produces 3 of 

the top 5 best forecasts, 
including the best overall 
forecast

• Forecasts show increase in 
FAR and POD followed by a 
decrease in FAR
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Key Findings from Experiments

•Rapid assimilation of frequent PAR volumetric data 
can benefit the WoFS by:
• more quickly spinning up storms in the analyses

• more quickly suppressing spurious convection

• leading to better analyses and forecasts at longer lead times

• However, computational cost is large for PAR1Cyc1.
• Big contributor is WRF I/O (in-core data assimilation?)
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Example of Adaptive Cycling Intervals

Cyc1+Cyc15

PAR15Cyc15

Cyc1+Cyc15

PAR15Cyc15

PAR15Cyc15

Cyc1+Cyc15
Better Worse

Better
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Asynchronous Data Assimilation (4DEnKF)
PAR5Cyc5

PAR1Cyc5

PAR5Cyc5

Better Worse

Better

PAR1Cyc5
PAR1Cyc5

PAR5Cyc5
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Summary of WoF-PAR Experiments

• Rapid assimilation of frequent PAR volumetric data can benefit the 
WoFS by:
• more quickly spinning up storms in the analyses
• more quickly suppressing spurious convection
• leading to better analyses and forecasts at longer lead times

• Adaptive cycling intervals
• a potential way to substantially improve analyses and forecasts

• Asynchronous data assimilation (4DEnKF)
• only marginally improved analyses and forecasts

Stratman et al. (2020)
https://doi.org/10.1175/WAF-D-19-0165.1
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