24th Conference on IOAS-AOLS, 15 January 2020, Boston, Massachusetts

Optimal Temporal Frequency of NSSL Phased-Array Radar Observations for an Experimental Warn-on-Forecast System Derek Stratman, Nusrat Yussouf, Youngsun Jung, Tim Supinie, Ming Xue, Patrick Skinner, and Bryan Putnam

Acknowledgements: SENSR funding, OU/OSCER supercomputer resources, and XSEDE/TACC supercomputer resources

derek.stratman@noaa.gov

Warn-on-Forecast and Phased-Array Radar

- NOAA Warn-on-Forecast (WoF) Program
 - Goal is to support NOAA's *watch-to-warning* operations for high-impact weather by providing probabilistic model guidance
 - Warn-on-Forecast System (WoFS): storm-scale ensemble data-assimilation and prediction system
- *Radar* is the key observing platform for the WoFS
- PAR can scan a full volume every ~1 min (vs. ~5 min for WSR-88Ds)
- Previous OSSE studies show improved analyses and forecasts with more frequent radar DA
- What about for the WoFS?

Experiment Design

- 31 May 2013 "El Reno" EF3 tornado
 - 2303–2344 UTC
- Multiscale data assimilation system
 - GSI-EnKF and WRF
 - 15- and 3-km domains
 - 36 ensemble members
 - Conventional observations only
- Storm-scale data assimilation system
 - ARPS-EnKF and WRF
 - 1-km horizontal grid spacing
 - 36 ensemble members
 - 3-km ensemble provides IC/BCs
 - PAR observations only (Z and Vr)
- Forecasts launched from five analysis times.

Data Assimilation Experiments

• Assimilating PAR volumetric scans every 1, 3, 5, and 15 min

Current WoFS assimilates one volume of radar data every 15 min, similar to PAR15Cyc15.

Assessment of Forecasts: 2-km MSL Reflectivity

- Subjective evaluation
 - Probability of reflectivity > 35 dBZ
 - MRMS reflectivity
- Objective verification
 - ensemble Fractions Skill Score (eFSS)
 - 35-dBZ threshold

eFSS

Forecasts initialized at 2200 UTC After 15 min of DA Cycling

0 10 20 30

40 50

60 70 80 90 100

Valid at 2300 UTC

derek.stratman@noaa.gov

Forecasts initialized at 2300 UTC After 75 min of DA Cycling

0 10 20 30 40 50 60

70 80

90 100

Ensemble Fractions Skill Score for All Forecasts

- PAR1Cyc1 performs the best, followed by PAR3Cyc3 and PAR5Cyc5
- PAR15Cyc15 performs the worst

Assessment of Forecasts: 2–5-km Updraft Helicity

- Subjective evaluation
 - Probability of UH > 400 m² s⁻²
 - 90th percentile of UH
 - MRMS azimuthal wind shear
- Objective verification
 - Match UH objects within 40 km of azimuthal-wind-shear objects
 - Contingency-table statistics

Forecast

Assessment of Forecasts: 2–5-km Updraft Helicity

- Subjective evaluation
 - Probability of UH > 400 m² s⁻²
 - 90th percentile of UH
 - MRMS azimuthal wind shear
- Objective verification
 - Match UH objects within 40 km of azimuthal-wind-shear objects
 - Contingency-table statistics
 - Performance diagram

Forecasts initialized at 2200 UTC After 15 min of DA Cycling

Initialized at 2200 UTC

Forecasts initialized at 2300 UTC After 75 min of DA Cycling

Initialized at 2300 UTC

derek.stratman@noaa.gov

Performance Diagram for All Forecasts

 PAR1Cyc1 produces 3 of the top 5 best forecasts, including the best overall forecast

Performance Diagram for All Forecasts

- PAR1Cyc1 produces 3 of the top 5 best forecasts, including the best overall forecast
- Forecasts show *increase in FAR and POD* followed by a *decrease in FAR*

Key Findings from Experiments

- Rapid assimilation of frequent PAR volumetric data can benefit the WoFS by:
 - more quickly spinning up storms in the analyses
 - more quickly suppressing spurious convection
 - leading to better analyses and forecasts at longer lead times
- However, computational cost is large for **PAR1Cyc1**.
 - Big contributor is WRF I/O (in-core data assimilation?)

Summary of WoF-PAR Experiments

- Rapid assimilation of frequent PAR volumetric data can benefit the WoFS by:
 - more quickly spinning up storms in the analyses
 - more quickly suppressing spurious convection
 - leading to better analyses and forecasts at longer lead times
- Adaptive cycling intervals
 - a potential way to substantially improve analyses and forecasts
- Asynchronous data assimilation (4DEnKF)
 - only marginally improved analyses and forecasts

Stratman et al. (2020)

https://doi.org/10.1175/WAF-D-19-0165.1

derek.stratman@noaa.gov

