Estimates of Lightning NO_x Production based on High-Resolution OMI NO₂ Retrievals

Xin Zhang¹

Yan Yin¹, Ronald van der A^{1,2}, Jeff L. Lapierre³

¹ Nanjing University of Information Science and Technology (NUIST), Nanjing, China ² Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands ³ Earth Networks, Germantown, Maryland, USA

Credit: Santiago Borja

LNO_x (lightning NO_x)

- ➢ Hot-channel: O_2 and N_2 dissociation producing NO (Zel'dovich and Raizer, 1967), the NO reacts in the atmosphere with O_3 to form NO₂ quickly.
- > Corona discharges: directly produce O_3 and N_2O .
- one of the largest natural sources of NO_x (2 8 Tg N yr⁻¹, 4 -16% of NO_x emissions)
- the least known one within the total atmospheric NO_x budget (Schumann and Huntrieser, 2007)

Increasing time / distance

Murray (2016), Curr Pollution Rep

Background (Estimates)

Literature Estimates

Motivation

Calculating LNO_x directly (satellite + lightning data)

- 1. Which satellite?
- 2. What's the detection efficiency of lightning data?
- 3. How to get NO_x column during convection?
- 4. How to distinguish LNO_x with other NO_x , especially anthropogenic NO_x ?

Satellite data:

OMI (Ozone Monitoring Instrument)

13×24 km², 13:30 (local time)

Lightning data:

ENTLN (The Earth Networks Total Lightning Network)

EARTH NETWORKS[®]

Detection efficiencies of **intracloud** flashes and strokes are **88%** and **45%** over the Continental US (Lapierre et al. 2019)

Detection efficiencies of **cloud-to-ground** flashes and strokes is > 90% over the Continental US (Lapierre et al. 2019)

Methods

 $\mathrm{VCD_{NO_2}} = \frac{\mathrm{SCD_{NO_2}}}{\mathrm{AMF}}$

SCD_{NO2}: NO₂ slant column densities;

VCD_{NO2}: NO₂ vertical column densities;

AMF: Air mass factors

Methods

$$\mathbf{VCD_{NO_2}} = \frac{\mathbf{SCD_{NO_2}}}{\mathbf{AMF}}$$

AMF Dependencies:

- NO₂ profile
- Scattering weights

solar zenith angle (SZA), viewing zenith angle (VZA),

relative azimuth angle (RAA), albedo, and surface pressure

Methods

The Berkeley High Resolution (BEHR) OMI NO₂ retrieval

$$AMF_{trop} = \frac{a \, priori \, SCD}{a \, priori \, VCD_{trop}}$$

Valid pixels \geq 5 for each 1 x 1 grid (MJJA 2014):

1 **OMI**

• Cloud Radiance Fraction ≥ 90% for each OMI pixel

(Pickering et al. 2016)

• Cloud Optical Pressure ≤ 650 hPa for each OMI pixel

Valid pixels \geq 5 for each 1 x 1 grid (MJJA 2014):

2 ENTLN

Flashes ≥ 2400 for 1 x 1 grid 2.4 h before OMI pass time

(Lapierre et al. 2019)

 Strokes ≥ 8160 for 1 x 1 grid 2.4 h before OMI pass time (Lapierre et al. 2019)

Valid pixels \geq 5 for each 1 x 1 grid (MJJA 2014):

③ WRF-Chem

• $LNO_2Vis/NO_2Vis \ge 50\%$

Vis: the part **above the cloud pressure** detected by OMI

• Flashes ≥ 1000 for 1 x 1 grid 2.4 h before OMI pass time

Comparisons between different methods

- LNO₂ production efficiency (PE):
 20 -- 80 mol/flash
- LNO₂Clean > LNO₂ > NO₂Vis > LNO₂Vis
- LNO₂ method is suitable for
 both clean and polluted regions

NO₂ pollution

- The NO₂ pollution can be transported over cloud. (a, b)
- Many LNO₂ exists below the cloud. (d)
- The overestimation by NO₂Vis can't be counteracted by LNO₂ below the cloud. (c)

Effects of Cloud pressure

The largest differences

-80

-80

0.4

-70

0.5

0.4

-70

0.5

- convective parameterizations
- lightning parameterizations

Effects of lightning parameterization

Setting of LNO production (WRF-Chem):

200 mol/flash \rightarrow 1000 mol/flash

(official BEHR setting)

Focusing on the Continental US in MJJA 2014, we find that:

- The LNO₂ PE is 32 ± 15 mol NO₂/flash and 6 ± 3 mol NO₂/stroke.
- The LNO_x PE is 90 \pm 47 mol NO_x/flash and 17 \pm 9 mol NO_x/stroke.
- Our method reduces sensitivity to the background NO₂ and includes much of the below-cloud LNO₂.
- Careful consideration of the LNO_x parameterization and LNO_2/NO_2 is needed, given its large influence on the estimation of LNO_2 and LNO_x PE.

Zhang et al. (2019), *Atmos. Meas. Tech. Discuss.* Doi:10.5194/amt-2019-372

Future

Lightning instruments NO₂ instruments Polar orbiting Geostationary Geostationary Sentinel-4 **TEMPO** GEMS **TROPOMI** 180° 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E GLM (GOES-16 and GOES-17) ✓ 5.6 × 3.5 km² ✓ **TEMPO, Sentinel-4, GEMS** LI (MTG-I)

18

LMI (FY-4A ✓ and FY-4C)

Focusing on the Continental US in MJJA 2014, we find that:

- The LNO₂ PE is $32 \pm 15 \text{ mol NO}_2$ /flash and $6 \pm 3 \text{ mol NO}_2$ /stroke. • The LNO₂ PE is $90 \pm 7 hank dyour _x$ /stroke.
- Our method reduces sensitivity to the background NO₂

and includes much of the below-cloud LNO₂.

• Careful consideration of the LND $_{\rm Da}M_{\rm 1}$ and ${\rm LNO}_2/{\rm NO}_2$ is needed,

given its large influence on the estimation of LNO₂ and LNO_x PE.

Zhang et al. (2019), *Atmos. Meas. Tech. Discuss.* Doi:10.5194/amt-2019-372

GitHub: zxdawn

BEHR-LNOx

19

Uncertainty

Uncertainty types	Allen et al. 2019	Pickering et al. 2016	Zhang et al. 2019
BEHR Tropopause Pressure	-	-	4%
Cloud Radiance Fraction	-	-	2%
Surface Pressure	-	-	0%
Surface Reflectivity	-	-	0%
LNO ₂ Profile	5%	-	29%
Profile Location	-	-	1%
Strat VCD	10%	35-40%	10%
Systematic Errors in Slant Column	5%	15%	5%
lightning DE	25-50%	30%	15%
Tropospheric Background	30%	15%	20%
Time Window	10%	15%	8%
LNO ₂ below OCP	10%	10%	-
LNO ₂ lifetime	25%	0%	24%
NO/NO ₂	20%	-	20%
Net	58-72%	55%	51%

Sol,