Comparison of Object-Based and Grid-Based Verification of Warn-on-Forecast System HAILCAST Forecasts

Rebecca Adams-Selin¹, Christina P. Kalb², Patrick S. Skinner³, Tara Jensen²

¹Atmospheric and Environmental Research (AER) ²National Center for Atmospheric Research Developmental Testbed Center (NCAR/DTC) ³OU/CIMMS and NOAA/NSSL

Funding provided by NOAA JTTI award no. NA180AR4590388

Motivation

• What makes a "good" hail size forecast?

Motivation

- Different end users have different definitions of "good"
 - forecaster: issuing a watch, or a warning?
 - model developer
- What verification methods can we use to understand if our forecast is "good"?

Models

- CAM-HAILCAST hail size forecasts from:
 - CAPS SAR FV3 ensemble, run during the 2019 NOAA HWT for May 14-17,20-24, 27-31
 - NSSL-WRF, from the 2019 NOAA HWT for May 14-17,20-24, 27-31
 - NSSL Warn-on-Forecast System ensemble, 18 member WRF ensemble from the 2019 NOAA HWT
- Validation: Multi-Radar Multi-Sensor Maximum Estimated Size of Hail (MRMS MESH)

Models

- HAILCAST hail size forecasts from:
 - CAPS SAR FV3 ensemble, run during the 2019 NOAA HWT for May 14-17,20-24, 27-31
 - NSSL-WRF, from the 2019 NOAA HWT for May 14-17,20-24, 27-31
 - NSSL Warn-on-Forecast System ensemble, 18 member WRF ensemble from the 2019 NOAA HWT
- Validation: Multi-Radar Multi-Sensor Maximum Estimated Size of Hail (MRMS MESH)

Interested in knowing more about HAILCAST's implementation in the FV3? Visit poster #191: Henderson, J., C. Calkins, T. Supinie, L. M. Harris, Y. Wang, and R. Adams-Selin: *Implementation of CAM-HAILCAST in the Stand-Alone Regional FV3*

- Neighborhood grid-based verification
 - Neighborhood Maximum Ensemble Probability of Schwartz and Sobash (2017, Mon. Wea. Rev.)
 - Convert hail size forecast to a yes/no forecast on a coarse grid, smooth, and calculate its reliability
 - Coarse grid tries to ensure forecasts close in space are still viewed positively by the verification method
- Can be useful for end users interested in:
 - mesoscale (not storm-scale) forecasts
 - the performance of the model as a whole (convection and convective hazard forecasts together)

- Object-based forecasts Model Evaluation Toolkit (MET) Method for Object-Based Diagnostic Evaluation (MODE; Davis et al. 2006a,b, *Mon. Wea. Rev.*)
 - Avoid the "double penalty" by matching hail swath to hail swath
 - Mesoscale configuration: 24-h hail swaths, scale of supercell family or single MCS

- Object-based forecasts Model Evaluation Toolkit (MET) Method for Object-Based Diagnostic Evaluation (MODE; Davis et al. 2006a,b, *Mon. Wea. Rev.*)
 - Avoid the "double penalty" by matching hail swath to hail swath
 - Mesoscale configuration: 24-h hail swaths, scale of supercell family or single MCS
 - Storm-scale configuration: 1-h hail swaths, individual storm scale

HAILCAST

- Object-based forecasts Model Evaluation Toolkit (MET) Method for Object-Based Diagnostic Evaluation (MODE; Davis et al. 2006a,b, *Mon. Wea. Rev.*)
 - Avoid the "double penalty" by matching hail swath to hail swath
 - Mesoscale configuration: 24-h hail swaths, scale of supercell family or single MCS
 - Storm-scale configuration: 1-h hail swaths, individual storm scale
- Matched object requirement: only include forecast hail swaths with a matching observed object
 - Avoids "unfair penalty": what if the model fails to produce any convection?
- Useful for end users interested in:
 - performance of their convective hazard model!

Mesoscale configuration

CAPS-FV3 SAR; NSSL-WRF

Mesoscale configuration

38 mm (1.5 in)

CAPS-FV3 SAR; NSSL-WRF

CAPS-FV3 SAR; NSSL-WRF

Warn-on-Forecast System ensemble (WRF)

Warn-on-Forecast System ensemble (WRF)

Skinner configuration (Skinner et al. 2018) **Object Identification:**

- Find regions of HAILCAST or MESH exceeding a prescribed threshold of 1 inch
- Regions must be larger than 60 km² to be retained as an object
- Second maximum intensity threshold optionally applied to HAILCAST objects where objects are only retained if the max intensity exceeds a prescribed value

Object Matching:

- Objects matched using a total interest score defined as the average between centroid and boundary (minimum) displacement
- Both displacement measures use a maximum allowable displacement of 40 km
- Total interest must exceed 0.2 for objects to be matched
- Only a single forecast object is allowed to be matched to a single observed object

Unmatched objects included in statistical calculations!

init: 2019-05-07, 2100 UTC valid: 2019-05-07, 2300 UTC

Skinner configuration

Warn-on-Forecast System ensemble (WRF)

POD: 0.56

FAR: 0.55

BIAS: 1.41 CSI: 0.32

Skinner configuration

Warn-on-Forecast System ensemble (WRF)

Conclusions

- Depending on your end user of your convective hazard forecast, you should vary the verification method. What do you want to know?
- Can the model provide skillful forecasts of hail's existence, on a meso-spatial scale? (e.g., an SPC outlook?)
 - Grid-based neighborhood verification with upscaling for a given hail size threshold
 - CAPS-FV3 SAR HAILCAST: wide variations in skill among FV3 members. Member pert_sfcl1 appears to offer the most reliable 25-mm hail forecast.

Conclusions

- Depending on your end user of your convective hazard forecast, you should vary the verification method. What do you want to know?
- If the model correctly forecasts convection, are HAILCAST's forecasts of hail size skillful? (E.g., info for a model developer)
 - Object-based verification with matching object requirement
 - CAPS-FV3 SAR HAILCAST:
 - Pert_sfcl1 strongly underforecasts peak hail magnitudes within objects
 - Core_mp1 offers higher CSI values for forecasting 38-mm hail objects, but with larger error (forecast-MESH) among matched objects
 - Wide variation in skill among members
 - Warn-on-Forecast System Ensemble
 - Much tighter distribution of skill among members
 - Slight overforecasting by HAILCAST when WRF correctly forecasts convection

Conclusions

- Depending on your end user of your convective hazard forecast, you should vary the verification method. What do you want to know?
- Does the model produce skillful forecasts of hail's existence and location on a storm scale? (E.g., can it be used for warnings?)
 - Object-based verification without matching object requirement (Skinner configuration)
 - Warn-on-Forecast System Ensemble
 - Tight distribution of skill among members
 - Overforecasting of convection and 25-mm hail by WRF-HAILCAST
- How are using this information to improve HAILCAST?
 - Poster #165: Adams-Selin, R: Comparison of One-Dimensional Pseudo-Lagrangian and Three-Dimensional Fully Lagrangian Trajectories when Forecasting Hail Size
 - Poster #166: Dahl, Nathan, R. Adams-Selin, R. E. D. Jewell, and I. L. Jirak: *Updating HAILCAST Hail Size Predictions in NSHARP*