
: An Open Source Framework For Dynamic Network
Simulations at Scale

Taha Azzaoui1, Valmor F. de Almeida*

University of Massachusetts, Lowell MA: 1Dept. of Computer Science and Mathematics, *Dept. of Chemical Engineering (Nuclear Program).
American meteorological society annual meeting 14 January 2020, Boston, MA

Overview

1 Breaking complex systems up into independent
parts (modules) and coupling those parts
greatly simplifies the implementation of
large-scale problems.

2 Cortix provides an environment for connecting
modules and passing coupling data between
them.

3 Cortix uses the Message Passing Interface
(MPI) to take advantage of massively
mutli-core systems by scaling up the number of
decoupled modules per simulation.

Introduction

Complex systems are often simulated via a sin-
gle monolithic code which attempts to fully imple-
ment the system’s governing equations and sequen-
tially integrate them over time. Doing so, for suf-
ficiently complex systems, can be computationally
and theoretically infeasible. That is, solving millions
of tightly-coupled n-dimensional ordinary differen-
tial equations is computationally expensive- pro-
hibitively so at scale. Additionally, complex mod-
els with many moving parts are difficult to concep-
tualize and design entirely at once. As such, we
present Cortix: a Python library for system-level
module coupling, execution, and analysis of dynam-
ical system models that exchange time-dependent
data. Cortix enable users to decompose complex
coupled models into a finite set of parts called mod-
ules. Cortix provides an environment for exchanging
data between the modules that make up the over-
all model. Cortix is highly parallel, making use of
both MPI and the Python multiprocessing library to
harness the power of massively multicore systems.

Cortix Module Connectivity

1 Mi evolves on its own time ti .
2 Requires a parameter vector pi(ti) .
•These parameters can be fed as input into modules.

3 Coupling vectors q ~j,i(ti) allow Mi to use data
from other modules in the network.
•Mi will wait for time-stamped coupling data at ti via
message passing; this effectively synchronizes the whole
simulation.

Module Evolution Over Time

Initialize every module Mi

(
x(t0); q(t0),p(t0)

)
at

t0 = 0 in the network. For all modules Mi, i =
1, . . . , N do:
1 Solve for x(t(k)

i) ∀ Mi

(
x(t(k)

i); q(t(k−1)
i),p(t(k−1)

i)
)

in parallel.
2 Compute q(t(k)

i),p(t(k)
i) and exchange

information: q ~i,j(t
(k)
j) and q ~j,i(t

(k)
i).

3 Advance t(k+1)
i ← t

(k)
i + ∆t(k)

i according to the
configured time step ∆t(k)

i .
In step 2 above, message passing at different times
effectively synchronizes the simulation as some mod-
ules will have to wait for information at the re-
quested time.

Simulating Droplet Swirl

This Cortix use-case simulates the motion of a
swarm of droplets in a vortex stream. It consists
of two modules, namely, a Droplet module used to
model the droplet dynamics, and a Vortex module
used to model the effects of the surrounding air on
the falling droplets. The Droplet module is instan-
tiated as many times as there are droplets in the sim-
ulation while a single Vortex module is connected
to all Droplet instances. The communication be-
tween modules entails a two-way data exchange be-
tween the Vortex module and the Droplet mod-
ules, where Droplet sends its position to Vortex
and Vortex returns the air velocity to Droplet at
the given position.

Droplet Motion Model

The equation of motion of a spherical droplet can be
written as:

md dtv = fd + fb,

where

fd = cdAρf
||v − vf||

2
(v − vf),

is the form drag force on the droplet,
fb = (md −mf) gẑ,

is the buoyancy force on the droplet,

cd(Re) =

24
Re Re < 0.1(√

24
Re + 0.5407

)2
0.1 ≤ Re < 6000

0.44 Re ≥ 6000
is the drag coefficient as a function of Reynold’s
number, Re = ρf ||v|| d

µf
. The mass of the droplet and

its displaced fluid mass are denoted md and mf , re-
spectively. Droplet diameter, d, dynamic viscosity,
µf, and mass density, ρf, of the surrounding air are
provided.

Vortex Model

Here we simply use an imposed vortex circulation in
analytical form given by its tangential component of
velocity

vθ(r, z, t) =
(

1− e
−r2
8 r2c

) Γ
2π max(r, rc)

f (z)
∣∣∣cos(µ t)

∣∣∣,
and its vertical component

vz(z, t) = vh f (z)
∣∣∣cos(µ t)

∣∣∣,
where

f (z) = e
−(h−z)

`

is a vertical relaxation factor, rc is the vortex core
radius, Γ = 2πR

vθ|r=R is the vortex circulation, R is the
vortex outer radius, h is the height of the vortex,
and ` is the relaxation length of vz.

Results

A set of 1000 droplets of water (Droplet mod-
ules) are released from 500-m altitude into a Vortex
stream of air at random positions within a square
area of 250 × 250 m2 and random droplet diameter
sizes ranging from 5 mm to 8 mm; standard physical
properties of both fluids are used.

Figure 1: Cortix connectivity network for 1000 Droplet in-
stances and one Vortex module.

Figure 2: Trajectories of 1000 droplets released from random
positions at 500-m altitude.

This droplet swirl example tests the parallel scal-
ability of Cortix to connect over 1000 modules, as
well as the multiple instantiation of the same mod-
ule aimed at simulating the collective phenomena of
rainfall. Future work will focus on Cortix module
development to build models of complex dynamical
systems as applied to various scientific areas.

Figure 3: Speed of all droplets varying with time showing the
approach to terminal velocity.

Scalability

As today’s scientific workloads become increasingly
parallel, a major design goal of Cortix is to be scal-
able from the start. By default, Cortix executes in
“multiprocessing mode” which allows for rapid de-
velopment and interfaces well with the Jupyter note-
book environment. Cortix can also be run in “MPI
mode”, which makes use of the Message Passing In-
terface to take advantage of massively multicore sys-
tems by mapping the execution of modules across
thousands of cores. This combination provides users
with a lightweight environment to design and test
their modules along with the flexibility to scale up
to arbitrarily large HPC clusters with minimal code
change. Additionally, Cortix is implemented in the
Python programming language which allows users to
leverage the numerous tools and packages available
within the scientific Python ecosystem.

of Droplets Execution time (s) # of cores
250 127 252
500 168 502
1000 346 1002
2000 1660 2002

Table 1: Droplet Simulation Performance Trend

Acknowledgments

This work was partially funded by the University of Mas-
sachusetts Lowell Francis College of Engineering and Idaho
National Laboratory (INL). Access to parallel computing cy-
cles at the INL high-performance supercomputers sponsored
by Dr. Terry Todd is greatly appreciated.

•Web: cortix.org
•GitHub: github.com/dpploy/cortix

https://cortix.org
https://github.com/dpploy/cortix

