
• The Gridpoint Statistical Interpolation (GSI)-based hybrid ensemble-variational (EnVar) data assimilation 
(DA) scheme has been extended for convective scales including the direct assimilation of radar radial 
velocity and reflectivity by Johnson et al (2015) and Wang and Wang (2017).

• This GSI-EnVar system has been tested within the operational NAMRR and HRRR model contexts for the 
2017 and 2018 NOAA Hazardous Weather Testbed (HWT) spring forecasting experiments by the Multiscale 
data Assimilation and Predictability (MAP) lab at the University of Oklahoma.

• Ten retrospective cases from 2015 and 2016 are used to facilitate development and testing of potential 
improvements to the convection-allowing assimilation and ensemble forecast system.

• In this study, these ten retrospective cases are used to explore the optimal design of convection allowing 
forecasts. 

• The performance of ensemble forecasting system depends upon ability of the ensemble to represent all 
sources of uncertainty, including initial condition (IC) errors and model errors.

• GSI-EnVar already samples multi-scale IC errors down to convective scale

• How do we properly sample model errors? In particular, how does a multi-core ensemble compare to 
single-core single-physics and single-core multi-physics ensembles? Can a single-core ensemble 
match the spread and skill of multi-core ensemble?
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Case name Final Analysis time Synoptic forcing 
May25_2015 1300 UTC 25 May 2015 Strongly
June17_2016 2000 UTC 17 June 2016 Weakly
May16_2015 2300 UTC 16 May 2015 Strongly
July06_2016 0100 UTC 05 July 2016 Weakly
July07_2016 0000 UTC 07 July 2016 Weakly
June26_2015 0400 UTC 26 June 2015 Weakly
July10_2016 0400 UTC 10 July 2016 Weakly
May23_2016 2300 UTC 23 May 2016 Moderately
Sept11_2015 0100 UTC 11 September 2015 Moderately
July14_2015 1900 UTC 14 July 2015 Strongly

• The cases include many examples of both discrete isolated 
storms (e.g., May 23, 2016 case) and organized MCSs
(e.g., long-lived squall lines in May 16, 2015 and May 25, 
2015 cases). 

• Diverse synoptic forcing and organizing mechanisms are 
also included in these cases, such as strong upper level 
trough and surface cold fronts, slow moving or stationary 
frontal zones with multiple clusters growing upscale.

Experiment
Name

Model Core Member # Microphysics 
Scheme PBL Scheme LSM Scheme

NMMB NMMB M0-M9 Ferrier-Aligo MYJ Noah
ARW-SP
(Single Physics) ARW M0-M9 Thompson MYJ RUC

MM (Multi-Model) NMMB + 
ARW

M0-M9 randomly split and 
taken from NMMB and 
ARW-SP experiments

ARW-MP ARW M0 (control) Thompson MYJ RUC
(Multi-Physics) M1 Thompson MYJ Noah

M2 NSSL YSU Noah
M3 NSSL MYNN Noah
M4 Morrison MYJ Noah
M5 P3 YSU Noah
M6 NSSL MYJ Noah
M7 Morrison YSU Noah
M8 P3 MYNN Noah
M9 Thompson MYNN Noah

ARW-MPSKEB ARW
As in ARW-MP but including 
application of SKEB during 
forecast

• Each ensemble free forecast is initialized from a 10-member subset of the corresponding final GSI-EnVar analysis (NMMB or ARW), with 
the first member being the control member

• The MM ICs are a random sampling of the 10 final analyses from the NMMB and ARW-SP experiments (5 from each experiment)
• ARW-MP and ARW-MPSKEB are initialized from the final analysis from the ARW experiments (ARW-SP)

Fractions Skill Score (FSS) of 1-hr QPF

• 1-hour Quantitative Precipitation Estimate (QPE) and Composite Reflectivity (CREF) forecasts are verified against Multi-Radar 
Multi-Sensor (MRMS) gridded observations. 

• 48-km neighborhood radius applied for QPE and CREF ensemble verification

FSS Notes
• ARW-SP outperforms NMMB at 0.1 in. threshold. 
• MM competitive with best single-model single-physics run for 

0.1 in threshold
• ARW-MP shows benefit at later forecast times at 0.1 in threshold
---------------

• At higher thresholds, ARW-SP > NMMB for early lead times (0-
9 hrs), then NMMB > ARW-SP for later lead times (12+ hours)

• MM best experiment from hours 0-9
• ARW-MP generally in the middle, or tied for best skill in 9-18 

hours at 0.25 in.
• ARW-MPSKEB slightly improved FSS over ARW-MP in final 

~4 hours of heavy precipitation, but large increases in spread 
(shown by correspondence ratio below), matching MM by end of 
forecast

ROC Areas Notes
• Measure of forecast discrimination (between event and non-

event occurrences)
• For precip, AUC for multi-model and ARW-MP are best at 0.1 

in, but indistinguishable from one another (not shown)
• However, in terms of CREF, ARW-MP shows clear benefit at 30 

and 40 dbz 

Relative Operating Characteristics 
(ROC) Area Under the Curve 
for CREF

• After subjectively analyzing on a case-by-case 
basis, there are two main reasons why MM shows 
benefit over NMMB and ARW-SP

1. Better location and storm coverage in some 
cases – i.e. errors of NMMB and ARW-SP are 
“opposite” (top row at left)

2. Avoidance of single-model skill drop-offs in 
some cases – especially important when both 
models are similar in skill overall but on a 
case-by-case or hour-by-hour basis the best 
SMSP experiment differs (e.g. middle row, 
NMMB > ARW_SP; however,  bottom row, 
ARW_SP > NMMB. MM maintains storm 
coverage at both times/cases) 

• ARW-SP lower in error by 0.1-0.4 m/s and K for wind and temperature 
than NMMB; however NMMB lower in dewpoint error by about 1 K.

• Differences in MM and ARW-MP are generally small in wind.
• MM significantly lower (0.1-0.2 K) than ARW-MP for hours 1-6 

temperature, while ARW-MP significantly lower by 0.1-0.3 K in 
dewpoint at hours 2-18.

• MM has consistently highest spread, particularly early lead times
• Combination of SKEB and MP shows most spread in near-surface 

wind in final 12 hours of forecast, and matches spread of MM in 
thermodynamic variables

Solid Lines –
Case-average 
RMSE verified 
against hourly 
RAP analyses

Dashed Lines –
Case-average 
ensemble 
spread

Spread-RMSE - Verified against RAP & RTMA analyses

• NMMB generally highest in error at most upper levels in wind, temp, 
dewpoint, with each of the other experiments clustered tightly together 
for fields at or above 500 hPa

• Below 700 hPa, larger differences in error with ARW-MP and ARW-
MPSKEB having lowest error in thermodynamic fields, followed by MM

• MM adds significant spread over single-model consistently at all levels, 
variables. 

• ARW-MP increases in spread with increasing forecast time, particularly 
for near-surface variables

• ARW-MPSKEB substantially increases spread over the course of the 
forecast, most notably in wind and geopotential height

--Spread approaches MM spread by fhr 18 

• Though many previous studies have examined ensemble design in multi-core or multi-physics contexts, this study examines them in the 
context of an optimal set of IC perturbations created by a multiscale hybrid DA system

• Among SMSP experiments, ARW-SP had superior performance to the NMMB for lighter precipitation fields and earlier forecast times, as 
well as much of the mean RMSE verification. The NMMB decayed MCSs too early in cases where decaying MCSs occurred in reality 

• Each of the model error experiments MM, ARW-MP, and ARW-MPSKEB compared favorably to NMMB and ARW-SP in many of 
objective verification scores and all of the ensemble spread diagnostics. 

• The MM experiment had the highest FSS for heavy precipitation thresholds, as well as the most amount of spread added consistently 
throughout the entire forecast. However, this added spread comes at the cost of undesirable ensemble clustering seen in spread diagnostics.

• The ARW-MP experiment significantly improved upon FSS precipitation verification over ARW-SP for lighter precipitation thresholds and 
the final 9-12 hours of heavier precipitation thresholds. This was accompanied with large increases in forecast discrimination and reliability 
of precipitation, as well as forecast spread of near-surface fields. However, the increase in spread was limited mainly to lower level fields 
below 850 hPa and took a “spin up” period of at least 6 hours for noticeable increases to appear. 

• Adding SKEB on top of ARW-MP showed small but significant improvements to precipitation verification in the latter half of the forecast 
for heavy (6.35 and 12.7 mm) precipitation. Additionally, there were substantial increases in ensemble spread over time for both
precipitation systems and for upper level fields (in particular wind and geopotential height).

• The comparison of MM to ARW-MP and ARW-MPSKEB led to some mixed results and depends upon what aspect of the forecast is 
examined. For early forecast lead times, MM is favored. However, ensemble clustering was found, and as SKEB and MP effects spun up 
the ARW-MPSKEB experiment showed much more favorable ensemble distributions with similar or lower skill to MM within the final 6-9 
hours of the forecast.

Results documented in recently accepted publication:
Gasperoni, N.A., X. Wang, and Y. Wang, 2019: A comparison of methods to sample model errors for convection-allowing ensemble forecasts  in the 
setting of multiscale initial conditions produced by the GSI-based EnVar assimilation system. Mon. Wea. Rev., accepted. 

Observations:
• Conventional obs assimilated hourly
• Radar reflectivity obs assimilated every 20 

minutes for last hour of DA

IC and LBC ensemble are provided by 
re-centering GEFS (20) and SREF (20) 
perturbations to GFS-ctl
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Ensemble Spread Diagnostics

• In terms of MP, we found benefits in cases where 
NMMB was inferior to ARW core.

• The most notable improvement of ARW_MP over 
ARW_SP tended to be in cases with weak or 
moderate synoptic forcing 

• Enhanced sensitivity to physics scheme, 
increased importance of forecast ensemble 
needing to account for model physics 
uncertainties. 
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Upper-air Verification vs. RAP Surface Verification vs. RTMA

• At the lighter 2.54 mm threshold, there is a noticeable 
improvement in reliability of the mid 50-70% probability 
ranges comparing ARW-MPSKEB to ARW-MP. 

• Model error experiments more reliable than SMSP at 
12.7mm, with ARW-MPSKEB having the best reliability of 
higher probabilities.

FSS Including ARW-MPSKEB
Correspondence Ratio of 1-h QPF 

(smaller vals = more spread) Neighborhood reliability diagrams f13-18

Rank Histograms f13-18 (relative to uniform distribution) Ensemble Std. Dev. of 500-hPa geo. hgt. (color fill) 
and 5760-m spaghetti contours

16 May 2015 fhr 18 shown. Blue – ensemble members, Green – RAP analysis 


