Direct economic cost of future heat death estimates for India under climate change and population scenarios

AMS100

Gulrez S Azhar,

Raffaele Vardavas, Jaime Madrigano, Gery Ryan and Shubhyu Saha

Tuesday, January 14, 2020

PARDEE RAND GRADUATE SCHOOL

Be the answer

Heatwaves

Now

- European (2003) 70,000 dead
- Russian (2010) 56,000 dead (?)
- US several
 - California
 - Chicago
 - LA
 - Others
- India almost an annual occurrence now

Future

- Future temperatures in SW Asia are projected to exceed threshold for human adaptability
- Heavily populated cities e.g. Delhi could have temperatures > 95° F (35° C) up to 200 days per year
- Likely to increase:
 - Frequency, Intensity, Duration, Deaths

Countries at Risk from Heatwaves

Countries at Risk from Heatwaves

Mortality estimates and costs

<u>Aim1</u>: Estimate future deaths under various climate change scenarios

<u>Aim2</u>: Estimate direct economic costs associated with these deaths

Methods

Data

- Deaths:
 - India's NDMA,NCRB, EM-DAT, Articles
 - GBD
- Temperatures WB Climate data portal
- Population & mortality United Nation (UN) population projections

Analysis

- Descriptive & calculated temp indices
- E-R function using Poisson & Neg Bi models
- Deaths (5-yr) in increments
- Array multiplication with temp increases
- Direct economic costs using VSL

Monthly Temperatures

Annual heat deaths by age-groups

Annual heat deaths by gender

Estimates	OLS		Poisson		Negative Binomial	
	β	SE	β	SE	β	SE
GBD Value	1407.000 *	533.04	0.095***	0.00	0.095**	0.03
GBD Upper Limit	1862.477	697.56	0.100***	0.00	0.100**	0.04
GBD Lower Limit	109.200	71.22	0.020***	0.01	0.020	0.01

Regression coefficients calculated for excess heat deaths per °C rise in mean summer temperatures

Projected heat deaths

Projected heat deaths

Population	Temperature related excess death estimates for RCP 8.5				
Prediction Intervals (PI) ('000)	2025	2050	2075	2100	
Lower 95 PI	43.55	56.18	61.24	48.76	
	(30.6 – 56.5)	(39.48 - 72.88)	(43.03 - 79.44)	(34.26 – 63.25)	
Lower 80 PI	44.08	59.39	68.55	59.36	
	(30.98 – 57.19)	(41.73 – 77.04)	(48.17 - 88.93)	(41.71 – 77)	
Median	45.03	65.17	83.85	84.04	
	(31.6 – 58.41)	(45.8 – 84.55)	(58.92 - 108.8)	(59.05 – 109)	
Upper 80 PI	45.95	71.18	101.5	114.2	
	(32.29 – 59.61)	(50.02 - 92.34)	(71.34 - 131.7)	(80.27 - 148.2)	
Upper 95 PI	46.41	74.52	112.9	135.9	
	(32.62 - 60.21)	(52.37 - 96.68)	(79.34 - 146.5)	(95 47 – 176 3)	

Projected costs

Mid, later, and end of century temperature related excess death direct cost estimates for five population growth scenarios on RCP 8.5 using US VSL estimates (\$9.631 million)

Population	Temperature related excess death direct cost estimates for RCP 8.5				
Prediction Intervals (PI) ('000)	2025	2050	2075	2100	
Lower 95 PI	\$419,430,050,000	\$541,069,580,000	\$589,802,440,000	\$469,607,560,000	
Lower 80 PI	\$424,534,480,000	\$571,985,090,000	\$660,205,050,000	\$571,696,160,000	
Median	\$433,683,930,000	\$627,652,270,000	\$807,559,350,000	\$809,389,240,000	
Upper 80 PI	\$442,544,450,000	\$685,534,580,000	\$977,546,500,000	\$1,099,860,200,000	
Upper 95 PI	\$446,974,710,000	\$717,702,120,000	\$1,087,339,900,000	\$1,308,852,900,000	

Projected costs

Mid, later, and end of century temperature related excess death direct cost estimates for five population growth scenarios on RCP 8.5 using India VSL estimates (\$0.275 million)

Population	Temperature related excess death direct cost estimates for RCP 8.5				
Prediction Intervals (PI) ('000)	2025	2050	2075	2100	
Lower 95 PI	\$11,976,250,000	\$15,449,500,000	\$16,841,000,000	\$13,409,000,000	
Lower 80 PI	\$12,122,000,000	\$16,332,250,000	\$18,851,250,000	\$16,324,000,000	
Median	\$12,383,250,000	\$17,921,750,000	\$23,058,750,000	\$23,111,000,000	
Upper 80 PI	\$12,636,250,000	\$19,574,500,000	\$27,912,500,000	\$31,405,000,000	
Upper 95 PI	\$12,762,750,000	\$20,493,000,000	\$31,047,500,000	\$37,372,500,000	

Discussion

- Greater increase in min & mean temp than max temp
- Decreasing temp range
- No respite at night
- People unable to control their thermal environment are more vulnerable

- 9.5% rise in mortality / °C temp
- ~84,000 end-century excess deaths (median pop and RCP 8.5)
- \$13 to \$23 billion direct economic costs
- Considerable range

Challenges

- Steady state assumption: that the future is an extension of the past
- Possible non-linear relationship
- Absence of district-level, day-wise heatwave deaths (by age and gender) to be correlated with temperature data
- Difficultly in characterizing human adaptation to elevating temp

Policy Implications

Where & when to focus

- Some parts of the country will be affected more than others
- Rural and urban poor have unique exposure and vulnerabilities
- Males in the working age groups are dying more
- Deaths will increase in the future and plateau out by the end of the century

What to do

- Reduce human & economic impacts
- Adaptation requires a combination of strategies
- Subgroups needs special focused measures
- Bottom up ethnographic research needed

Policy Implications

- We calculated direct economic impacts using Value of Statistical Life measures.
- These deaths to the order of billions of dollars.
- With additional indirect costs included, overall impacts are likely to be much higher.
- There would be impacts on families, migration, etc.
- How our societies internalize these costs and deal with the consequences remains to be seen and investigated

Acknowledgements

Committee

- Gery Ryan (Chair)
- Raffaele Vardavas
- Jaime Madrigano
- Outside reader
 - Shubhyu Saha

- CAPP & Pardee RAND
 Dissertation Awards
- Horowitz Foundation Dissertation Award

Questions?!

Heatwaves:

"Silent and invisible killer of silenced and invisible people." ~ Eric Klinenberg

Be the answer

"Heat waves receive little public attention not only because they fail to generate the massive property damage and fantastic images produced by other weather-related disasters, but also because their victims are primarily social outcasts-the elderly, the poor, and the isolated-from whom we customarily turn away."

Eric Klinenberg, Heat Wave: A Social Autopsy of Disaster in Chicago

