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Introduction ERAS5 Monthly Moist PV
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and q,, q, are the specific dry air mass content and specific humidity;, largest effects in the tropics into the subtropics.

B As anticipated, P, < P, particularly at low to mid levels, with the

respectively. To understand the differences between standard and moist
PV, we take the difference between 6 and 0,, yielding
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For consistency with ERAS formulation, we assume ¢, =1 — q, — q; —
q- — q; — qs, Where qi, q,, q;, g5 are the specific water contents of liquid, Maiic/Afica 030Waveraged PV (JJA 1JA 760 hPa PY (K ko
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rain, ice, and snow, respectively. From (3), water vapor acts to increase 0,
while all other forms of water act to decrease 6,.
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I B e Figure 3: Left) June-August 0 — 30°W mean shaded P, and P, — P (P overlaid). Middle, Right)
June-August shaded P, and P, — P at 925 hPa and 700 hPa. The vertical component of P, — P is
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overlaid in the bottom panels of the middle and right subplots.
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Figure 1: Left) June-August zonal mean shaded 6, and 6, — 6 (6 overlaid). Right) Shaded ¢, ¢;, ¢;, and
q + q- + q; + q, with overlay of g5 in third panel from the top and ¢, for all other panels.

Conclusions and Future Work

W 0, > 0 at low levels and 6, < 0 at mid-upper levels, with the
largest effects in the tropics through the subtropics. Moist PV is typically smaller than standard PV on monthly time scales as the vertical

B Specific humidity is the largest contributor while cloud liquid and component of PV dominates over the meridional component on large space and time
ice water are Secondary contributors 0(102) smaller scales. We suggest that the differences between moist and standard PV are larger
: .

B Vortical 0 Fient I q 1 | 9 Jient on smaller space and time anomalies and deserve further study in remotely sensed
CLUCal Up gladliClls al€ SHIallelh allth HCHAONAL Ty STadICis are observations and reanalyses. Future work will also involve writing and sharing scripts

larger at low levels, which typically lead to smaller PV. with the community that diagnose moist PV using either pressure or model level data.
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