
Model

• MOM6/SIS2 ocean/ice model from NOAA/GFDL

• 75 hybrid vertical levels

• Horizontal resolution 1 degree

(0.5, 0.25 and regional 0.4 degree are ready to test as well)

Observations

The latest observations from several near real-time operational streams are

downloaded nightly, thinned, and converted to formats readable by JEDI,

coverage from an example date is shown in figure 2.

• satellite sea surface temperature – from NESDIS Advanced Clear Sky Pro-

cessor for Ocean (ACSPO). VIIRS, AVHRR, MODIS, AHI, and ABI platforms are

available (though only AVHRR used for current initial tests)

• absolute dynamic topography – various altimeters (e.g. Jason-2/3, Senti-

nel-3a, Cryosat-2, SARAL) from NESDIS/RADS using XGM2016 geoid model

• sea surface salinity – from SMAP satellite

• insitu T/S profiles - ARGO, XBT, CTD, and MRB profiles from Fleet Numeri-

cal Meteorology and Oceanography Center (FNMOC)

Data assimilation

• JEDI system used for unified forward operators, observation database IO,

variational solvers, and static background error representation.

• Observation-space 3DVAR is currently used, though JEDI provides straightfor-

ward transition to 3DVAR-FGAT, EnKF, and EnVar as well

• Multivariate covariance between T/S/SSH (Weaver et al, 2006)

The Joint Center for Satellite Data Assimilation (JCSDA) is working with NOAA and

NASA to develop improved ocean data assimilation methods for the next-

generation seasonal to sub-seasonal prediction systems. These systems will be

based on JCSDA’s Joint Effort for Data Assimilation Integration (JEDI), a unified

DA framework designed to work across various domains and models. As a demon-

stration and development testbed for the ocean component, JCSDA is creating a

real-time daily ocean monitoring system based on Sea-ice Ocean Coupled Assimi-

lation (SOCA) .

System Goals

• Real-time demonstration of functioning ocean DA within JEDI framework

• agile development – ensure an up-to-date working version can be released at

any time, yet also automatically incorporating the latest changes from multiple

developers and repositories

• NOT intended to compete with current operational monitoring systems

Agile Development

Development within JEDI projects is very fast paced as upstream repositories are

often updated several times a day. It is not feasible for a human to check every

change to every repository (figure 1) for their impacts on system performance.

This process has been automated using common agile development practices

used in the software development community.

Agile Development Terminology
• Continuous integration – automating the process of integrating code changes

from multiple contributors, using GitHub, TravisCI, and AWS

• Continuous delivery – code changes are automatically prepared and tested for

a release to the production code (although the push to production is still a man-

ual task)

• Continuous deployment – continuous delivery, plus the use of metrics that if

passed, automatically push code to production level (not implemented here yet)

Real-Time Ocean Monitoring at the Joint Center for Satellite Data Assimilation:
A Testbed for Ice-Ocean DA Development and Evaluation

Travis Sluka 1,2, Guillaume Vernieres 1,2, Rahul Mahajan 3 1UCAR/JCSDA, 2NOAA, 3NASA GMAO

Overview

sea surface temperature (IR)
 AVHRR, VIIRS

sea surface salinity
 SMAP

sea surface temperature (MW)
GMI, AMSR2, WindSat

altimetry
 Jason-2/3, Sentinel-3a, Cryosat-2, SARAL

Insitu T/S
ARGO, XBT, CTD, MRB

Figure 1 Some of the dependencies among the GitHub repositories used by the real-time
system. The complex dependencies and frequent updates requires a robust continuous
delivery pipeline to keep up with development.

Core JEDI repositories

OOPS

(DA solvers)

github.com/JCSDA/oops

SABER

(static B representation)

github.com/JCSDA/saber

IODA

(obs I/O & distribution)

github.com/JCSDA/ioda

UFO

(forward operators)

github.com/JCSDA/ufo GSW

(Gibbs SeaWater toolkit)

github.com/TEOS-10/GSW-Fortran

MOM6

(Modular Ocean Model 6)

github.com/GFDL/MOM6

SOCA-
realtime

github.com/JCSDA/soca-realtime

SOCA

(Ocean DA)

github.com/JCSDA/soca

IODA
converters

(obs format conversion)

github.com/JCSDA/ioda-converter

CRTM

(radiative transfer model)

github.com/JCSDA/crtm

Figure 2 Coverage from a representative set of observations assimilated. One day of
observations shown in gray, one hour shown in various colors for each platform

Configuration

Future Work

Travis Sluka: tsluka@ucar.edu

A robust continuous delivery pipeline provides rapid deployment of new code to

the production version, providing immediate turnaround of performance metrics

and quickly exposing unforeseen issues with “operational” cycling. It also reduces

workload on developers by automating testing and ensuring there is always a

latest working version of the code. Several upgrades are planned as the system

evolves:

• Upgrade to global 1/4 degree, and 1/25th degree regional Gulf of Mexico

• Upgrade to ensemble DA methods (EnKF, 4DEnVar)

• Diagnostics and fields made publicly available at www.jcsda.org

• Metrics for automatic acceptance of production code (i.e. a transition

from continuous delivery to continuous deployment)

Benefits of a continuous delivery pipeline

• Automation helps keep up with fast paced changes

• Building, testing, and releasing are less work for the humans (don’t those
humans have enough work to do already?)

• The latest version of the code always works.

• Code changes can easily make its way into the production run on the same
day.

Figure 4 Example of the diagnostic evaluation website showing that updated code in the
candidate branches performs better than the production version and ready for promotion
to production.

Continuous integration

Whenever any code is to be merged into any repository’s

development branch in the JEDI framework or SOCA, a pull

request is issued on GitHub. This triggers the first level of

automatic steps:

1) Code is built on TravisCI and AWS

2) Unit tests for the repository are run

Continuous Delivery

Only after the above automatic steps pass can code be merged into the main

development branch. Then, on a daily basis the following steps are performed

for soca-realtime

1) Integrated code build, using all the latest repositories in figure 1

2) Integration testing

3) Realtime and 14-day retrospective run

4) Evaluation of performance metrics

Having a useful continuous delivery/deployment pipeline relies on creating

good tests and useful validation metrics. If these are done well, the entire

pipleline can be completely automated.

Evaluation:

Every night the latest production and development streams are updated to a

website for evaluation. Various observation space metrics are used (e.g. O-A

and O-B rmsd and bias) Figure 4

• Production level — current master branch on GitHub

• Nightly stable branch — development branch on GitHub, assimilation is

restarted from 2 weeks in the past whenever the code changes, in order to

provide enough overlap with the production run for useful metrics

continuous integration

each JCSDA repository soca-realtime repository

auto auto auto auto manual

continuous delivery

continuous deployment

Figure 3 The continuous delivery pipeline. After code in any repository is pushed to
GitHub it is automatically built and tested. Once the code changes are merged into the
development branch, soca-realtime will use it for automatic tests and parallel produc-
tion runs.

Continuous Delivery Pipeline

Surface currents
with 1/4 test

http://www.jcsda.org

