Generating Urban-Scale Building Data to Support Climate Modeling

Gerald Mills, UCD, Dublin; N. Buckley, UCD Dublin; C. Reinhart, MIT, Boston; J. Ching UNC, Chapel Hill and; Dev Niyogi & Daniel Aliaga, Purdue.

Talk structure

- 1. Introduction: The evolution of WUDAPT and the need for building scale data
- 2. a. Developing an archetype approach to the acquisition of building data on form and function (Tabula-Episcope): b. Generating a large scale urban building database (Dublin)
- 3. Evaluating the value of these data using an Urban Building Energy Model (UBEM) applied to a case-study area.
- 4. Conclusion

A lack of climate relevant urban data that is consistent in terms of scale and content. This is a major impediment to model application.

The World Urban Database and Access Portal Tools project is a community-based project to gather a census of cities around the world. Come join us!

IEW THE VIDEO

Objectives

- 1. Acquire information on aspects of form and functions of cities relevant to climate studies.
- 2. Store the data in a geographic framework that is searchable and widely accessible.
- 3. Build portal tools to extract parameters and analyse urban properties for cross-urban comparison and model building.

WUDAPT levels of urban detail

Level 2

Detailed description of urban landscape parameters at a scale suited to boundary-layer models
Use of all available databases (e.g. building footprints)

Level 1

More precise parameter values for each LCZ
Focus on aspects of form (e.g. building heights, street width) and functions (e.g. building use).
Sampling of LCZ using GeoWiki

Level 0

Local Climate Zones (LCZ) along with parameter ranges
Categorise city neighbourhoods into LCZ types
Local experts provide training areas
GoogleEarth, Landsat8 and Saga

Level 0 WUDAPT data

Stewart & Oke, 2012

The Local Climate Zone (LCZ) classification provides a scheme for describing the basic physical geography of cities suited to further data gathering.

It can be used as a *sampling frame* to gather more detailed urban data (e.g. building materials, cooking fuel, etc.) at more detailed spatial scales.

LCZ Type	Mean Height (m)	Building Surface Fraction	Impervious Surface Fraction	QF (Wm ⁻²)
1	>25	40-60%	40-60%	50-300
2	10-25	40-70%	30-50%	<75
3	3-10	40-70%	20-50%	<75
4	>25	20-40%	30-40%	<50
5	10-25	20-40%	30-50%	<25
6	3-10	20-40%	20-50%	<25
7	2-4	60-90%	<20%	<35
8	3-10	30-50%	40-50%	<50
9	3-10	10-20%	<20%	<10
10	5-15	20-30%	20-40%	>300

The **Local Climate Zone** approach developed by Iain Stewart and Tim Oke builds on other approaches and provides a classification scheme for urbanised and natural landscapes that can be used to describe **neighbourhoods** within cities.

Quality

WUDAPT product

Urban Atlas

Fig 7. European local climate zone map.

Demuzere M, Bechtel B, Middel A, Mills G (2019) Mapping Europe into local climate zones. PLOS ONE 14(4): e0214474. https://doi.org/10.1371/journal.pone.0214474 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214474

Getting to levels 1 & 2

Acquiring more precise parameter values at a finer spatial resolution

1. Approximating urban-scale detailed morphology

⁽b) Chicago - Aerial

(a) Chicago - Synthetic

The Digital Synthetic City (DSC) tool can generate a realistic representation of buildings and their distribution across the urban landscape, using a variety of satellite and complimentary information.

The DSC data can be used to derive building related UCPs far more precisely that the LCZ approach which is of great value for simulating the effects of cities on airflow (pollution dispersal) and energy exchanges at street level.

The Digital Synthetic City (Daniel Aliaga, Purdue)

2. Acquiring building scale data Photo to Building

https://www.youtube.com/watch?v=zPvCnorXERQ&t=175s

- 1. email photo2building@gmail.com and we give you a free login.
- 2. Login to photo2building.com.

S UCD Connect	X M Photo2Building - gerald.mills@u X MyGeo	hub - Resources: Photo28 🗙 🧊 10	00th American Meteorological S $$ X	+
← → C	.org/tools/photo2bldg			
ℜ MyGeoHub		RESEARCH 1	TEACHING RESOURCES COMMUNITY	
Home / Tool Forge / Tools / Photo2B	Building / About			Sear
Photo2Buildir By <u>Manush Bhatt</u> , Rajesh Kalyanam (cont <u>Daniel Cerardo Aliaga</u> (contributor) Construct a 3-D building model (reconstru	ributor), <u>Gen Nishida</u> (contributor), <u>Liu He</u> (contributor), <u>Christopher K May</u> (con uction) given a picture of a building	tributor), Dev Niyogi (contributor),	Leune Version 1.04 - published on 15 Jan 2020 This tool is closed source.	ch Tool Miner All Sourcection, Resourceasts
About Usage Versions Reviews Category	Guestions Wishlist Supporting Docs	Published on		
Abstract Procedural modeling is a popular appr input. Our system does not aim at an e	oach to synthesize urban environments but requires writing suitably parameter exact reproduction of a building, but rather at capturing its overall shape, the layo	zed grammars. In this tool, we automate the ger ut of its facade, and the style of its windows. To	neration of procedural buildings by taking a do so, we decompose the problem into log	i photograph as example ical stages (mass, façade,
windows) and treat each stage with a i resulting pipeline can generate a diver Credita NSF CSSI 1835739, NSF CBET 12502	common methodology that consists of simplifying the input to make it amenable rsity of procedural buildings with no user intervention. 232, NSF IIS 1302172	to analysis by deep networks trained with synth	etic data, and remning the output with cust	om optimizations. I ne
Cite this work Parageshore chaulet aits this work as fi	allaure			

Photo2Building: By Manush Bhatt, Rajesh Kalyanam (contributor), Gen Nishida (contributor), Liu He (contributor), Christopher K May (contributor), Dev Niyogi (contributor), Daniel Gerardo Aliaga (contributor)

Potential value of urban scale building data Urban building energy models

Citywide model for Boston

UBEMs apply 'physical models of heat and mass flows in and around buildings to predict operational energy use as well as indoor and outdoor environmental conditions for groups of buildings' (Reinhart & Cerezo-Davila, 2016, p. 197).

Reinhart, C.F. and Davila, C.C., 2016. Urban building energy modeling–A review of a nascent field. Building and Environment, 97, pp.196-202.

Urban Modelling Interface (UMI)

UMI is designed by the Sustainable Design Lab in Massachusetts Institute of Technology (MIT) for simulating environmental performances of buildings at a neighbourhood scale. It employs the Rhinoceros CAD programme to generate the building database that is then used by Energy Plus (DOE 2) to simulate energy profiles. It is free to use and has not yet been tested outside of North America.

The basic information required for each building includes:

- The georeferenced location;
- The dimensions (height, width and depth) and orientation;
- Details on the envelope fabric and on the HVAC systems and;
- Profiles of the occupants.

2. Acquiring building data on form and function (Dublin)

Linking individual buildings to a building typology that provides details on the typical construction materials and operational systems.

1	ABULA	7. T	erraced hous	e, solid	brick	wall, 1	1900	- 1 92	9		
	A CARLES	-			Build	ing eleme	nts :		Insula	tion	U - value
	100000	1	1726	Walls	Solid brid	s, 325 mm			none		1.64
1		U	1 + 1 1	Roofs	Pitched,	insulation betw	een joists		30 mm		0.68
A DOUGH			- 17	Floors	Suspend Solid floa	ed timber floor or (kitchen)			none		0.69
			31 21-	Windows	Single ga Single ga	azed, wooden fi azed, metai fran	ne ne		N/A N/A		4.8
			M	Doors	Solid tim	ber			none		3.0
			kal le	Heati	ng syst	tems chara	acterist	tics:	Fuel		Efficiency
De	scription:			Primary	Central insulate	heating boiler, j d	pipe work	un-	Mains g	5	63%
TYP	ical redbrick house four	nd in Dut	olin, Cork, Limerick etc	Secondary	Open fir	e in grate			Smakele		30%
ext	ension to rear. Suited to	a mix of	internal and external	Hot water	From pr	imary heating s	ystem. Ele	ctric imme	ersion used i	sion used in Summer	
wai	l insulation. Suspended be retrofitted with insul	timber fi	oors are common that	Cylinder	Insulate	d with 23mm la	gging jack	et, no cyár	nder thermo	stat.	
	be retrointed morning	ucion.		Controls	Program	vmer only		_			_
Refurbishment steps — standard						Prim. energy Ca kWh/m²/y		Carbon Dioxide kgCO ₂ /m ² /y		Energy Rating	
0	Bu	ilding fa	bric upgrade steps:	pric upgrade steps: Expected U-values				625 1 (actual state) (actua		2 state)	G
1	Roof insulation and standard package*	Add	250 mm of mineral wool being joists and installation of	250 mm of mineral wool between and over the cel- ing joists and installation of required roof vents					12	1	G
2	Wall insulation	Add	Dry line/internally insulate v mail laminate board	with 72.5-82.5m	n ther-	0.27	3	89 82			'
1	Flat roof	Add	Thermal laminate (82.5mm) or rigid board applied on to	board fixed to u p of roof (100-15	nderside Dmm)	0.22	3	358 75		le -	E2
4	Windows and Doors	Replace	Double glazed, low-e windo Insulated doors	ws, air filled, 16n	vm gap	14/2.0	3	17	67		E1
			Sy	stems upgr	ade:		-				
,	Space and water heat- ing system and con- trols and renewable energy	eat- Replace Condensing polier 50%, efficient, two proprated heating pones with tions and thermostatic control, independent water heating. He Host water of place in unueled with 50 mm pays fram. Econodry heating system is replaced by a solid fuel burrer (75% efficient)					33		CI		
als	a includes draught stripping, 80	mm lagging	jacket for HW cylinder and lo	w energy builds.	-	Estima	ated c	osts a	nd pay	back	time**
-	Refurbishm	ent Step	s-Standard Measures	5		Meas	ure	Estimat	ed costs	Payba	ack (y)
500						Step	ep1 €1		1,296		3.8
						Step	Step 2 €		12,770		13.3
				Primary En	Primary Energy Step		0 3 € 668		668	68 4.2	
100			-			Step	94	€6	,412	1.1	29.7
200				Carbon Dio	cister	Step	5	£6	,535		7.5
200						100	n.	•2	r,081		10.9
100		-				Standard upgrade summary					
						Primary	PRPERV R	educed t	NV:	460 kW	/h/m*/v

The urban landscape could be sampled strategically (based on geometry, LCZ types, age of construction, etc.) to acquire details on the building stock. The challenge here is to devise a suitable typology that could be used across cities and cultures.

Methodology Workflow

Representative photographs of the nine common Tabula types.

Туре	Construction period	Wall	Roof	Windows	Energy Rating
(3) Terraced house	Pre- 1900	Uninsulated brick 325/225 mm thick.	Front pitched with 100mm of mineral wool in ceiling joists/ Rear pitched roof no insulation.	Single glazed, wooden frames.	352 (O) 95 (R)
N=5435		U = 1.64/1.41	U = 0.4/2.3	Glazed fraction 6% U = 4.8	
(7) Terraced house	1900-1929.	Uninsulated brick walls 325 mm thick.	Pitched roof with 50mm of mineral wool in ceiling joists.	Single glazed , wooden/steel frame	624 (O) 178 (R)
N=5365		U = 1.64	U = 0.68	Glazed fraction 6% U= 4.8/5.7	
(9) Terraced house	1930-1949	Solid mass concrete	Pitched, insulation between the joists	Single gazed, metal frame	392 (O) 106 (R)
N=2760		U = 2.2	U = 0.68	Glazed fraction 6%	
(17) Terraced house	1978-1982.	300 mm walls, partially filled	Pitched, insulated between the joists	Double-glazed, metal frame, 6 mm gap	311 (O) 117 (R)
N=1235		U = 1.1	U = 0.4	Glazed fraction 9% U= 3.7	
(25) Terraced house	1994-2004.	Cavity walls, partially filled	Pitched, insulated between the joists	Double glazed, PVC/wood, 12 mm gap	177 (O) 119 (R)
N=869		U=0.55	U= 0.36	Glazed fraction 10% U= 2.8	
(38) Apartment block	1994-2004	Block with part filled cavity walls 300mm thick.	Flat roof with insulation.	Double-glazed, air filled windows with 12mm gap, wood/PVC frames.	175 (O) 63 (R)
N=1109		U = 0.55	U = 0.35	Glazed fraction 10% U= 2.8	
(39) Apartment block	2005- 2010	Solid reinforced concrete externally insulated.	Flat roof with insulation.	Double-glazed, air filled windows with 16mm gap, wood/ PVC frames.	145 (O) 6 (R)
N=458		U = 0.27	U = 0.22	Glazed fraction 40% U= 2.0	

The geography of Tabula building types across the city centre N=25,000.

Energy regulations on buildings were first implemented in 1978 and have become progressively more stringent over time. Buildings constructed before 1950 have solid walls and are not amenable to simple refurbishment.

There is no energy use/demand data available at a building/neighbourhood scale. The available energy data consists of Building Energy Rating (BER) information that is required for all buildings bought or rented after 2006. This information is available at the same level as census data (Small Areas).

Energy use and CO2 emissions

Building Energy Rating values are in KWhm⁻²y⁻¹, which represents the expected energy cost of heating a residential space to a comfortable level for typical occupancy levels.

BER data at the Small Area level for Dublin City. The inset map shows details for the neighbourhood of Stoneybatter, which is used here to test the UBEM model.

The estimated average energy cost per dwelling based on typical occupancy and heating to a comfortable level.

Stoneybatter (compact low-rise) neighbourhood constructed between 1900-1930

Ground Floor Solid Red Brick House 1900 Internal Floor Red Brick 1900 Solid Red Brick Partition External Red Brick Wall Semi-Exposed Ceiling Red Brick house 1900 Pitched Roof Red brick 1900 Combined external floor - Uninsulated - Medium weight (data modified when loaded to file) Red Brick Single Glaze Glass

A typical row of houses in the case-study area (left) and a graphic decomposition of its fabric components in Design Build.

SEAI BER data - Current			UMI simulated original				
kWh/m²/ yr	BER	kgCO2m²/ yr	kWh/m²/ yr	BER	kgCO/m²/ yr		
377	E2	104.2	372	E2	102.8		
480	G	132.6	410	F	113.3		
369	E2	102.0	396	F	109.4		
382	F	105.6	398	F	110.0		
350	E2	96.7	388	F	107.2		
366	E2	101.1	383	F	105.8		
384	F	106.1	409	F	113.0		
425	F	117.4	399	F	110.2		
377	E2	104.2	383	F	105.8		
390	F	108	393	F	109		

Comparison of the BER data for the Small Areas that comprise Stoneybatter with aggregated building scale information from UMI simulations.

A depiction of the Stoneybatter neighbourhood and the energy rating following wall retrofit in the UMI simulation program. Buildings in white are not part of the simulations .

Conclusions

A typology approach is a viable approach to gathering building level data on form and function.

Knowledge of form and function attributes is needed for both urban climate/meteorology (outdoor) and building energy (indoor) applications.

These data may be sufficient to run urban building energy models that can address neighbourhood scale energy demand, anthropogenic heating, CO2 emissions, etc.

The picture to building tool developed at Purdue could help create an international typology suited for WUDAPT purposes.