

Asian megacity heat stress under future climate scenarios: Impacts of Air-conditioning feedbacks

Yuya Takane^{1, 2}, Yukitaka Ohashi³, Sue Grimmond², Masayuki Hara⁴, and Yukihiro Kikegawa⁵

1: National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

National Institute of Advanced Industrial Science and Technology **AIST** 2: University of Reading, Reading, UK

3: Okayama University of Science, Okayama, Japan

4: Center for Environmental Science in Saitama, Kazo, Japan 5: Meisei University, Tokyo, Japan

Project future climate's urban heat stress

- Future projections of urban heat stress are important to investigate strategies to mitigate urban heat islands and adaptations to urban climate change.
- But, Human heat stress projections with fine horizontal resolution sufficient to resolve urban climate (e.g. Kusaka et al. 2012 JMSJ; Doan et al. 2016 UC) are few.
- If both temperature and humidity are high, heat stress tends to be high. Such conditions are common in Japan megacities, with high population densities (e.g. Tokyo and Osaka) resulting in high risk of heatstroke during heat waves.
- Universal Thermal Climate Index (UTCI) allows heatstroke risk with a clear relation to physiological responses (e.g. human body core temperature).

Motivation #1 : to project future climate's UTCI using dynamical downscaling to 1 km horizontal resolution for Asian megacity Osaka.

How big is the AC-induced feedback on heat stress?³

A human behaviour - air-conditioning (AC) use - induces
 positive feedback could worsen urban thermal environment
 (produce additional temperature increase of 0.6 °C) in Osaka's
 August early mornings under the +3.0 °C global warming scenario
 (Takane et al. 2019 npj Climate and Atmospheric Science)

AC-induced positive feedback

How big is the AC-induced feedback on heat stress?⁵

- A human behaviour air-conditioning (AC) use induces
 positive feedback could worsen urban thermal environment
 (produce additional temperature increase of 0.6 °C) in Osaka's
 August early mornings under the +3.0 °C global warming scenario
 (Takane et al. 2019 npj Climate and Atmospheric Science)
- But **impact on heat stress remains unknow**. Understanding the impact is important.
- Motivation #2 : to clear how big the feedback impact on heat stress (UTCI) is.

WRF with modified BEP+BEM parameterisation

$$\boldsymbol{Q}_{\boldsymbol{F},\boldsymbol{AC}} = (H_{out} + E_{out}) + E_{C} = \frac{COP + 1}{COP} (H_{out} + E_{out})$$

- Residential grids

- Office grids (consider cooling tower)

 $Q_{F,AC,S} = Q_{F,AC} \qquad Q_{F,AC,S} = 0.722 Q_{F,AC}$ $Q_{F,AC,L} = 0 \qquad Q_{F,AC,L} = 0.278 Q_{F,AC}$

How to estimate the feedback impact

Osaka City (with 20 million population)

(Olympic game 2020) World exposition in 2025

The UTCI increase with ΔT_{GW}

Motivation #1

Daytime is dangerous with non-linear increases in body core temp and without thermal sensation change

Impact of AC induced feedback on UTCI reaches 0.6°C

The AC induced feedback impact is comparable to suggested benefits from urban heat island mitigation techniques in the literature

Conclusion - novelty

13

Motivation #1

UTCl increases with ΔT_{GW} and AC feedbacks. An 'extreme' heat stress area appears when +2.0 °C (+2.5 °C) warming scenario. These are dangerous conditions for people outdoors as they may experience large increases in body core temperature.

Motivation #2

- Impact of AC induced feedback on UTCI increase roughly linearly with ΔT_{GW} . At +3.0 °C warming scenario, this reaches +0.6 °C (12% of UTCI increase).
- This size is comparable to suggested benefits from urban heat island mitigation techniques in the literature. Therefore, the feedbacks are significant and potentially could cancel other mitigation benefits in the future, especially where AC use is large. Hence, this feedback should not be neglected in future urban climate projections.

Acknowledgments

- JSPS Overseas Research Fellowships
- JSPS KAKENHI Grant–in–Aid for Scientific Research (B) Number 16H04441
- Environmental Research and Technology Development Fund (1-1909) of the Environmental Restoration and Conservation Agency of Japan
- EPSRC LoHCool (EP/N009797/1)
- Newton Fund/Met Office WCSSP programme
- The 'Interdisciplinary Computational Science Program' in the Center for Computational Sciences, University of Tsukuba

Thank you!

- Verification the model against high-reso electricity consumption – Takane et al (2017, Int. J. Climatol.)
- Impact of AC induced feedback on temp & electricity demand – Takane et al. (2019, npj Climate Atmos. Sci.)
- Impact of AC induced feedback on heat stress Takane et al. (2020, Env. Res. Commun.)

Impact of AC induced feedback on UTCI reaches 0.6°C

The AC induced feedback impact is comparable to suggested benefits from urban heat island mitigation techniques in the literature

Reproducibility – Electricity consumption

Reproducibility – 2-m temperature

Takane et al. (2019) npj Climate and Atmospheric Science

Reproducibility – UTCI

Takane et al. (2020) Environ. Res. Commun.

Takane et al. (2019) npj Climate and Atmospheric Science

How to estimate the UTCI

2.3 UTCI calculation

The hourly UTCI is calculated for 11 years for each climate scenario using the polynomial parameterisation of the Fiala human physiology model (Fiala *et al.* 2012; Błażejczyk *et al.* 2013) in Bröde *et al.* (2012a). This parameterisation is frequently used because of its computational efficiency (e.g. Bröde *et al.* 2012b; Błażejczyk *et al.* 2013; Provençal *et al.* 2016; Ohashi *et al.* 2018). It is forced with the near surface air temperature (2-m simulations or 1.5-m observations), relative humidity, black globe temperature (T_g), and wind speed (within the urban canopy layer). The mean radiant temperature (T_{mrt}) is estimated from T_g , air temperature, and wind speed (Kinouchi 2001):

$$\varepsilon_h \sigma (T_{mrt} + 273.15)^4 = C_g + R_g \qquad (1)$$
$$R_g = \varepsilon_g \sigma (T_g + 273.15)^4 \qquad (2)$$

where C_g is the sensible heat flux from the globe surface (W m⁻²), R_g is the longwave radiation emitted from the globe surface averaged for the surface area (W m⁻²), and ε_g and ε_h are

the emissivities of the globe thermometer (assumed to be 1.0) and human clothing (0.98), respectively. C_g is a function of globe temperature and air temperature (Yuge 1960):

$$C_{g} = h_{cg} (T_{g} - T_{a}) \quad (3)$$

$$\frac{h_{cg}D}{\lambda} = 2 + 0.55Re^{0.5} \left(\frac{c_{p}\mu}{\lambda}\right)^{\frac{1}{3}}$$

$$(10 < Re < 1.8 \times 10^{3}) \quad (4)$$

$$\frac{h_{cg}D}{\lambda} = 2 + 0.34Re^{0.566} \left(\frac{c_{p}\mu}{\lambda}\right)^{\frac{1}{3}}$$

$$(1.8 \times 10^{3} < Re < 1.5 \times 10^{5}) \quad (5)$$

where *Re* is the Reynolds number (*UD*/*v*), *U* is the wind speed, *D* the diameter of the globe (=0.15 m), *v* is the kinematic viscosity of air (m² s⁻¹), *y* is the viscosity coefficient of air (Pa s), λ is the thermal conductivity of air (W m⁻¹ K⁻¹), and c_p is the specific heat under a constant pressure (J K⁻¹ kg⁻¹). T_g is estimated using the improvement to Okada and Kusaka (2013) in Okada *et al.* (2013):

$$T_g = \frac{(S_0 - 38.5)}{(0.0217S_0 + 4.35U + 23.5)} + T_a \quad (6)$$

where S_{θ} is the incoming shortwave radiation (W m⁻²). An evaluation for one site surrounded by office buildings in Osaka using hourly observations for June to August 2006–2012 reported a root mean square error of 2.15°C. This equation is applicable for urban environments under all weather conditions, including clear skies and overcast and rainy days (Okada and Kusaka 2013). More detail is given in Section S1 of the Supplementary material.

Daytime is dangerous with non-linear increases in body core temps and sweat production and without thermal sensation change

The AC feedback impact is comparable to benefits from ²⁴ urban heat island mitigation techniques

Morille and Musy (2017)

b UTCI_{AC \rightarrow FB} stress categories

How to project future climate (Pseudo Global warming method)

How to project future climate

How to project future climate

Urban categories	Facet Thickness (m) Number of layers	Material	Thermal conductivity (W m ⁻¹ K ⁻¹)	Volumetric heat capacity (×10 ⁶ J m ⁻³ K ⁻ ¹)	Surface albedo (-)	Surface emissivity (-)
Commercial and office (C)	Roof 0.03 m	Lightweight concrete /concrete/rock-wool board (ex 3 rd to 4 th layers)	0.520	1.4650	0.20	0.97
	10 layers	Insulation (air gap/styrene foam) (3 rd to 4 th layers)	0.014	0.09346	-	-
	Wall 0.0225 m 10 layers	Tile/mortar/concrete/sealed air gap/plasterboard (ex 9th layer) Insulation (air gap/styrene	0.710	1.6950	0.20	0.97
		foam) (9th layer)	0.019	0.06675	-	-
		Window (glass)	Area fraction on	the walls: 0.33		
		Electric air-source heat-pumps (rated COP=3.58 (cooling)): 100%				
	AC system	- Target room temperature: 2/ °C (for cooling)				
	 Initial and end local times of AC system: 0800-1900 (LT) 					
Fireproof apartment (Rr)	Roof 0.0225 m 10 layers	Concrete/styrene foam/ asphalt (ex 3 rd layer) Insulation (air gap/styrene	0.897	1.8150	0.20	0.97
		foam) (3 rd layer)	0.030	0.04370	-	-
	Wall 0.0234 m 10 layers	layer)	1.050	1.9340	0.20	0.97
		Insulation (air gap/styrene foam) (9 th layer)	0.042	0.03126	-	-
		Window (glass)	ss) Area fraction on the walls: 0.18			
		Electric air-source packaged air conditioners (rated COP=5.03): 100%				
	AC system	- Target room temperature: 28 °C (for cooling)				
		- Initial and end local t	imes of AC system	n: 0000-2400 (L1)	
Wooden detached dwellings (Rw)	Roof 0.0095 m 10 layers	Slate/plywood/plasterboard (ex 5 th to 8 th layers)	0.181	0.5281	0.20	0.97
		Insulation (air gap/styrene foam) (5 th to 8 th layers)	0.032	0.02616	-	-
	Wall 0.011 m 10 layers	Mortar/plywood/plasterboard (ex 5 th to 8 th layers)	0.323	0.9983	0.20	0.97
		Insulation (air gap/styrene foam) (5 th to 8 th layers)	0.032	0.02616	-	-
		Window (glass)	Area fraction on	the walls: 0.18		
		Electric air-source packaged air conditioners (rated COP=5.03): 100%				
	AC system	 Target room temperature: 28 °C (for cooling) 				
		 Initial and end local times of AC system: 0000-2400 (LT) 				

The model successfully reproduced electricity demand

The model successfully reproduced urban temperature

Urban Temp Monthly mean of August 2013 ³⁵N ³⁵N

(C)

AC settings

