100th Annual Meeting American Meteorological Society
17th Conference on Space Weather
New Instruments, Platforms, and Initiatives for Space Weather. Part III
Boston, MA January 13-16, 2020

A Chapman Conference on Space Weather: Recommendations for the Community

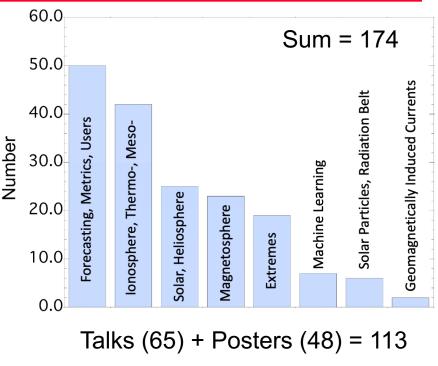
Abstract authors: <u>Anthony J. Mannucci¹</u>, Delores J. Knipp², Huixin Liu³, Ryan M. McGranaghan⁴, Xing Meng¹, A. Surjalal Sharma⁵, Bruce T. Tsurutani¹, Olga Verkhoglyadova¹

¹Jet Propulsion Laboratory, California Institute of Technology ²University of Colorado Boulder, USA

³Kyushu University, Japan ⁴Atmospheric and Space Technology Research Associates, LLC, USA ⁵University of Maryland, USA

Contributors to presentation content: Chapman conference co-conveners, program committee, speakers, meeting attendees and post-meeting telecon participants

Responsible for errors/omissions: Anthony J. Mannucci


Copyright 2020. California Institute of Technology. All Rights Reserved. Sponsorship of NASA Heliophysics Division.

- 1. Conference objectives and summary
- 2. Post-meeting activities
- 3. Towards recommendations
- 4. Summary

Conference Objectives & Summary

- Objective: "Perspectives that accelerate the development of forecasting"
- AGU: "Transformative"
- AGU: Pre- and post-meeting activities
- Special collection in Space Weather
- Meeting artifacts will receive a DOI

4 days

USA • 11-15 February 2019

Pre-Meeting Survey Highlights

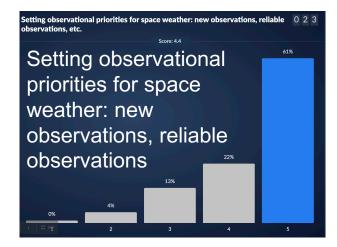
Top focus questions:

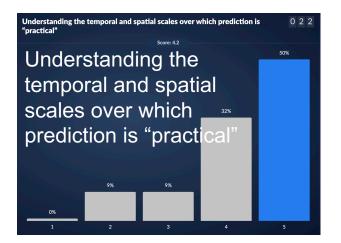
AGU CHAPMAN

- It is important to define temporal and spatial scales for which forecasting is practical – Agree
- Measures of forecast uncertainty are well understood and accepted across the community – *Disagree*

100 attendees 51 respondents

Pasadena, CA, USA • 11-15 February 2019


"Priorities" Survey Highlights


Released during the meeting

CONFERENCE

Proposed priorities ranked from 1-5

Top 2 priorities

Post-Meeting Activities

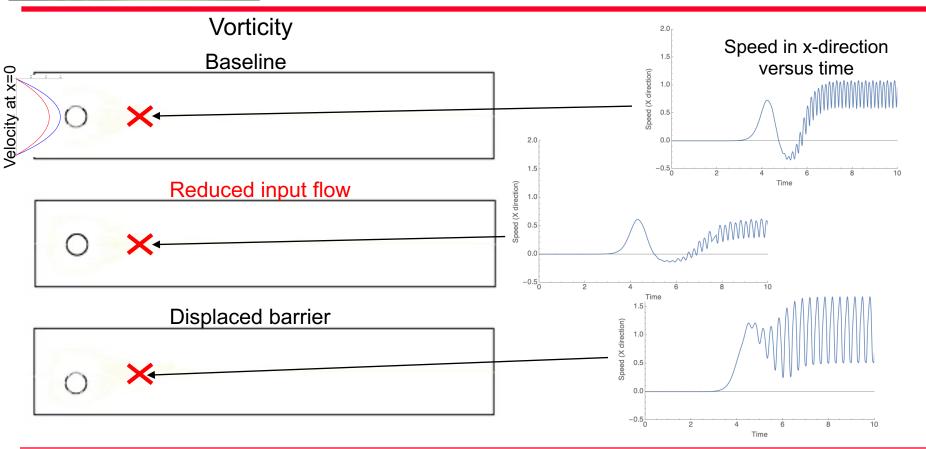
- Develop a "white paper" w/ recommendations
- Telecons
- Meeting documents with a permanent DOI:
 - Discussion notes from the meeting
 - Survey results

AGU CHAPMAN

- Post-meeting telecon notes
- Free-form documents open during the meeting
- Anonymous questions offered at the meeting
- Special collection in Space Weather Journal

Recommendations (1/1)

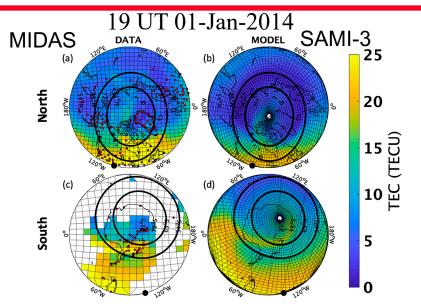
- 1-day workshop where the community discusses a "way forward" for developing predictive capabilities
 - Held adjacent to Space Weather Workshop, Boulder
 - Possibly expanding to an ongoing multi-day workshop
- Rationale: adapting the approach used by terrestrial weather prediction "won't work"
 - Weather has one primary equation as the basis for prediction: Navier-Stokes
 - Space weather has six primary equations
- Appeal for "disruptive" approaches


Recommendations (2/2)

- Observations enable a future of data assimilation
- The expense of observations requires that we understand the value proposition
- As a community, we need to develop the capability to estimate the value of a given observing system in terms of how it benefits a specific use case
 - "Observation system simulation experiment"

Pasadena. CA. USA • 11-15 February 2019

Example: Navier-Stokes Equation


Jan 16, 2020

AMS Annual Meeting 2020

AJM/JPL

Pasadena, CA, USA • 11-15 February 2019

Paradigms from the Literature

AGU CHAPMAN

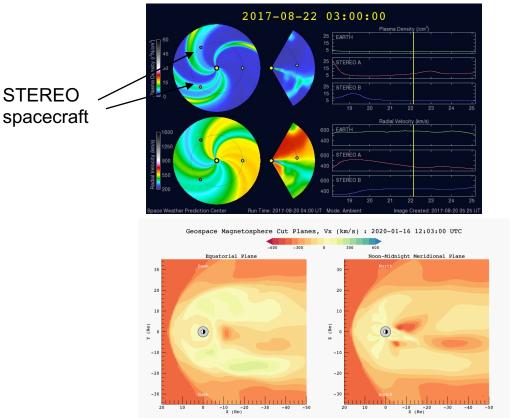
Figure 2. High-latitude TEC from (a and c) MIDAS and (b and d) SAMI3 at 19 UT on 1 January 2014. Black rings show 60° and 70° MLAT (at 300-km apex). Black dots at perimeter indicate local noon. Red dots indicate GPS ground stations. Chartier, A. T., J. D. Huba, and C. N. Mitchell (2019), On the Annual Asymmetry of High-Latitude Sporadic F, *Space Weather*, *46*(4), 619–9, doi:10.1029/2019SW002305.

"SAMI3 is not expected to provide accurate instantaneous predictions, but can provide insights into climatological behavior." – sufficiently for the science question.

- No data assimilated into SAMI-3
- Model agrees with TEC reconstruction to ~1 TECU
 - o Regional median
- Model range about ¹/₂ range of data

VERB Radiation Belt Model

- https://rbm.epss.ucla.edu/realtime-forecast/
- Starts with primitive equations for the electron phase space density
- Uses a Kalman filter and real-time data
 - "combines measurements that are irregularly distributed in space and time with a physics-based model to estimate the evolution of the system's state in time"
- Can no longer assimilate Van Allen Probe data


Jan 16, 2020

USA • 11-15 February 2019

AGU CHAPMAN

Space Weather Prediction Cente

Transitioned NOAA models


University of Michigan Geospace

- ENLIL-based forecasts (MHD)
- Data source is photospheric magnetogram
- Not the same as "traditional" data assimilation that samples the model domain

- MHD-based forecasts
- Data source is solar wind at L1 and various empirical inputs
- Not the same as "traditional" data assimilation that samples the model domain in real-time

- An exciting Chapman conference with excellent presentations and discussion "space weather" is vibrant!
- Pre- and post-meeting activities
 - Meeting artifacts online (soon)
 - Special collection in Space Weather Journal
- Recommendations (undergoing refinement):
 - Workshop to discuss way forward given the complexity of space weather
 - Developing approaches to assessing the "value proposition" for proposed observing systems and specific use cases
 - A means of prioritizing observational strategies

Space weather advances are made possible by the fundamental discoveries, observations, model developments and system deployments that have occurred over the past 20 years

BACKUP

Jan 16, 2020