

URBAN BOUNDARY LAYERS

OVER TALL AND VARIABLE HEIGHT BUILDINGS

AUTHORS: MARCO PLACIDI, ALEXANDROS MAKEDONAS, MATTEO CARPENTIERI

INTRODUCTION

- By 2050, cities will host 68% of the world population (DESA 2019).
- Tall buildings are rapidly increasing.
- Dense cities are constantly being built.

INTRODUCTION

- By 2050, cities will host 68% of the world population (DESA 2019).
- Tall buildings are rapidly increasing.
- Dense cities are constantly being built.

How does the new urban environment affect:

- Pollution
- Air circulation and mixing
- Meteorological phenomena

Case study: Hong Kong

Hong Kong is one such city

- Large density of buildings (λ_p)
- Many tall and 'super-tall' buildings.
- Standard deviation of height σ_h
- Average height $\,h_{avg}\,$
- Maximum height h_{max}

Models

Two idealized models were constructed that resembled some of Hong Kong's important geometrical parameters.

- h_{avg} = 80 mm
- λ_p = 0.44
- Uniform height
- h_{max} = 80 mm
- h_{max} = h_{avg}

- h_{avg} = 80 mm
- λ_p = 0.44
- σ_h = 49 mm
- h_{max} = 200 mm
- h_{max} = 2.5 h_{avg}

Models

Two idealized models were constructed that resembled some of Hong Kong important geometrical parameters.

- h_{avg} = 80 mm
- λ_p = 0.44
- Uniform height
- h_{max} = 80 mm
- h_{max} = h_{avg}

- h_{avg} = 80 mm
- λ_p = 0.44
- σ_h = 49 mm
- h_{max} = 200 mm
- h_{max} = 2.5 h_{avg}

Models

Two idealized models were constructed that resembled some of Hong Kong important geometrical parameters.

- h_{avg} = 80 mm
- λ_p = 0.44
- Uniform height
- h_{max} = 80 mm
- h_{max} = h_{avg}

- h_{avg} = 80 mm
- λ_p = 0.44
- σ_h = 49 mm
- h_{max} = 200 mm
- h_{max} = 2.5 h_{avg}

- All canopies have average height 80 mm.
- Similar process to Cheng and Castro (2002). Regular array of cubes.
- Closed-circuit wind tunnel testing at the University of Surrey EnFlo Lab.

- All canopies have average height 80 mm.
- Similar process to Cheng and Castro (2002). Regular array of cubes.
- Closed-circuit wind tunnel testing at the University of Surrey EnFlo Lab.
- Rotate 90 degrees to go from aligned to staggered.

AIMS & INSTRUMENTATION

- Examine the effects of a tall canopy and compare with Cheng and Castro (2002) and Cheng et al. (2007).
- Examine effects of a large standard deviation in a tall canopy, and compare them with the uniform height tall canopy.

Cheng, H., Hayden, P., Robins, A., and Castro, I., 2007. Flow over cube arrays of different packing densities. Journal of Wind Engineering and Industrial Aerodynamics 95, 715–740.

AIMS & INSTRUMENTATION

- Examine the effects of a tall canopy and compare with Cheng and Castro (2002) and Cheng et al. (2007).
- Examine effects of a large standard deviation in a tall canopy, and compare them with the uniform height tall canopy.

Instrumentation

- Two-component Laser Doppler Anemometry (LDA) used to create vertical velocity profiles and vertical shear stress profiles.
- Pressure tapped elements to measure drag (friction scaling).

Cheng, H., Hayden, P., Robins, A., and Castro, I., 2007. Flow over cube arrays of different packing densities. Journal of Wind Engineering and Industrial Aerodynamics 95, 715–740.

OUTLINE OF RESULTS

UΗ

- Depth of Boundary Layer (BL)
- Depth of Roughness Sublayer (RSL)
- Depth of Inertial Sublayer (ISL)

OUTLINE OF RESULTS

UΗ

- Depth of Boundary Layer (BL)
- Depth of Roughness Sublayer (RSL)
- Depth of Inertial Sublayer (ISL)

VΗ

- Depth of Boundary Layer (BL)
- Depth of Roughness Sublayer (RSL)
- Depth of Inertial Sublayer (ISL)

OUTLINE OF RESULTS

UΗ

- Depth of Boundary Layer (BL)
- Depth of Roughness Sublayer (RSL)
- Depth of Inertial Sublayer (ISL)

VΗ

- Depth of Boundary Layer (BL)
- Depth of Roughness Sublayer (RSL)
- Depth of Inertial Sublayer (ISL)
- Comparison of aerodynamic parameters

UNIFORM HEIGHT

Boundary Layer Depth

	C&C(2002)	Cheng(2007)	Mak(2019)
Block (mm)	10	20	80
BL δ (mm)	121	130	250
BL δ (h)	12	7	3.25

 Increase in BL thickness in staggered likely due to increase in street canyon length behind elements, likely 'wake flow' regime occurs.

UNIFORM HEIGHT

Roughness Sublayer

	$\mathrm{C\&C}(2002)$	Cheng(2007)	Mak(2019)
Block (mm)	10	20	80
RSL (h)	2	2	1.2
Collapse	No	No	Yes

• Collapse likely due to tight packing and skimming-flow regime

UNIFORM HEIGHT

Inertial Sublayer

- Relatively constant flux region appears.
- Possibly due to skimming effect of densely packed elements.
- Surface close to new raised flat plate.

----- Average ISL value Extrapolated to h_{avg}

VARYING HEIGHT

Boundary Layer

- BL doubles in depth from uniform height, despite average height of elements being the same.
- Standard deviation of height and height of maximum element increase drag.

	UH	VH
$h_{avg} \ (\mathrm{mm})$	80	80
BL δ (mm)	250	500
BL δ (h_{avg})	3.25	6.25
BL δ (h_{max})	3.25	2.5

VARYING HEIGHT

Roughness Sublayer

- The velocity profiles clearly collapse just above the tallest element height (z/h_{max} = 2.5).
- Large range of velocities occur below h_{avg} .
- Large σ_h increases mixing deep into canopy and skimming regime no longer occurs.

VARYING HEIGHT

Inertial Sublayer

- ISL formation still present.
- Large pressure gradient in wind tunnel due to BL thickness increase may cause the ISL to slope.
- Definition based on ±10 % variation perhaps inaccurate

Aerodynamic parameters

• Our results from uniform height experiments and literature showed decent agreement.

Aerodynamic parameters

• Our results from uniform height experiments and literature showed decent agreement.

VН

- The varied height results could not be compared with previous literature.
- Morphometric methods were used to compare VH results, but no resemblance was found.

CONCLUSION

Highlights

- From UH to VH the BL almost doubles in thickness.
- The RSL in both UH and VH converges just above the h_{max} .
- An ISL forms in the UH experiments.
- There is indication that a ISL can form over surfaces with large standard deviation, but more research is necessary.
- Much research in VH canopies still necessary.

CONCLUSION

Institution of MECHANICAL ENGINEERS

Acknowledgements: IMechE, Dr. Paul Hayden, Harry Thorpe, Jacques Andrieux and EnFLo Lab.

Contact details: Marco Placid: m.placidi@surrey.ac.uk Matteo Carpentieri: m.carpentieri@surrey.ac.uk

INTRODUCTION

Atmospheric Boundary Layer

Fernando, H. (2010). Fluid dynamics of urban atmospheres in complex terrain. Annual review of fluid mechanics, 42:365–389.

INTRODUCTION

Parameters

- *z*⁰ Zero-plane displacement
- d Roughness length
- *u*_{*} Friction velocity
- h_{max} Maximum height
- σ_h Standard deviation
- λ_p Packing density

 \overline{u}/U_{ref}

Turbulent Kinetic Energy

- In UH $\overline{w'^2}$ and $\overline{v'^2}$ are 2.3 times smaller than $\overline{u'^2}$
- $\overline{w'^2}$, $\overline{v'^2}$ not proportional
- In VH $\overline{w'^2}$ is 1.9 times smaller than $\overline{u'^2}$
- Cannot assume $\overline{w'^2} = \overline{v'^2}$

