Modelling 3-D radiative fluxes within the PALM-4U microscale urban climate model

Pavel Krč¹,² (krccas.cz), Jaroslav Resler¹
¹Institute of Computer Science, Czech Academy of Sciences, Prague
²Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Prague

PALM-4U
- A microscale urban climate modelling system
- Based on PALM large-eddy simulation model
- Written in Fortran+MPI, HPC enabled
- Open-source, community-developed
- Development coordinator: Leibniz University Hanover

RTM within PALM
- Explicit 3-D radiation interactions within the urban layer
- Fully integrated, real-time interaction with flow dynamics
- Using matching 3D grid
- Same MPI parallelization scheme as the rest of the model

Sky and sun
- Shortwave radiation (SW): direct and diffuse solar radiation
- Longwave radiation (LW): thermal emission from the sky
- Discretization
 - RTM v. 1: virtual faces (domain boundaries)
 - RTM v. 3: sky-view factor per face, discretized apparent solar position

Geometry and discretization
- Core radiative elements: faces (grid cell sides at surfaces)
- Surface-to-surface radiative exchange: view factors (VF)
- Lambertian reflections

Legacy discretization of the view
- All mutually visible face pairs: O(n²) when increasing resolution
- Limiting available for maximum distance and minimum view factor value
- Normalization necessary (Z=1)

Angular discretization of the view
- Fixed number of azimuth and elevation angles (fixed angular resolution) per face: O(d²) when increasing resolution
- Decreased discretization error for nearby surfaces

Computation
- Geometry (VF, SkyVF, CVF) precomputed before time stepping using raytracing
- Raytracing
 - Computationally expensive, MPI data exchange intensive
 - Legacy discretization: single beam raytracing
 - Angular discretization: optimized 2-D raytracing (whole vertical column at once)
 - Obstacle detection and plant canopy transmitance
 - Horizon height for SkyVF

Radiation above the urban layer
- Multiple models available in PALM: fixed, clear-sky radiation, RTM model, external radiative model (from mesoscale model or observation)
- Two-way radiative exchange with RTM
- Longer ray paths: scattering and cooling factors available

Plant canopy
- Explicit 3-D representation of the treetop structure by leaf area density (LAD)
- LAD determines partial absorption for each passing ray
- Interaction with surfaces by precomputed canopy view factors (CVF)
- SW: absorption (shading)
- LW: absorption and thermal emission
- Direct sensible heat exchange with surrounding air mass
- Latent heat flux: coupled to plant canopy transpiration model

References
Křč, P., et al. "Radiative Transfer Model 3.0 integrated into the PALM model system 6.0." Geoscientific Model Development (in preparation)

Acknowledgements
Supported by European Union – European Structural and Investment Funds Operation program Prague – Pole of Growth CZ.07.1.02/0.0/0.0/16_040/0000383 “URBI PRAGENSI” – Urbanization of weather forecast, air quality prediction and climate scenarios for Prague."