15th Symposium on the Urban Environment

Boston, January 13, 2020

Mean radiant temperature modeling outdoors: A comparison of three approaches

Csilla V. Gál¹ and Kerry A. Nice²

¹ Dalarna University, Sweden (cgal@du.se)

² Monash University, Australia

INTRODUCTION METHODS RESULTS DISCUSSION CONCLUSION

Mean radiant temperature (Tmrt)

 T_{mrt} expresses the short- and longwave radiation exchange of a standard human body in Celsius degrees. Celsius degree refers to the uniform temperature of an imaginary enclosure that results in an equivalent radiant heat exchange as the actual, non-uniform enclosure.

METHODS

Bartók Square, Szeged (Hungary)

SVF = 0.49

Air temperature and global radiation

METHODS

RESULTS

DISCUSSIO

CONCLUSIONS

Numerical models

ENVI-met v4.4.2 (Bruse 1999)

CDF model :: surface-plant-air interaction

Tmrt :: German VDI standards

projected area factor (fp) :: Underwood & Ward (1966)

elliptical cylinder with major axis facing the sun Indexed View Sphere (IVS) algorithm

retains view factor - element connection

Grasshopper, Microclimate Map Analysis (Mackey 2010)

Tmt :: effective radiant field ERF approach (Arens et al. 2014) Tmt = ERF + base Tmt fp :: Fanger (1972), seated

VTUF-3D v2 (Nice 2016)

urban energy balance model :: vegetation-radiation interaction extension of TUF-3D (Krayenhoff & Voogt 2007) \$\$Tmt :: modeled Tg\$

Human parameters / Numerical models	SW rad. absorptivity	LW rad. absorptivity	Posture
ENVI-met	0.70	0.97	standing
Grasshopper	0.70	0.95	seated
VTUF-3D	Tg	Tg	~squatting

Domain / Numerical models	Grid size
ENVI-met	3 x 3 m
Grasshopper	6 m x 6 m (LW) 3 m x 3 m (SW)
VTUF-3D	5 m x 5 m

Surface and obstacle parameters	Albedo	Emissivity	Transmissivity
Ground	0.18	0.95	-
Wall	0.20	0.90	-
Tree	0.20	0.95-0.96	0.07

RESULTS Scatterplot of observed-modeled Tmrt ENVI-met Grasshopper VTUF-3D 80 80 r 80 r y = 1.04 * x + -7.56 v = 0.98 * x + -1.45v = 0.99 * x + -2.66RMSE = 7.11 RMSE = 6.2 RMSE = 9.05 d = 0.96 d = 0.92 d = 0.95 modeled T_{MRT} [°C] 60 60 60 × ~ °0 40 40 40 0 20 20 20 sunlit shaded × nighttime 0 20 40 60 80 0 20 40 60 80 20 40 60 80 0 observed T_{MRT} [°C]

	ME	RMSE	RMSEs	RMSEu	d
ENVI-met	-6.32	7.11	6.35	3.21	0.95
Grasshopper	-2.13	6.20	2.16	5.82	0.96
VTUF-3D	-3.05	9.05	3.06	8.51	0.92

RESULTS DISCUSSION CONCLUSIONS

DISCUSSION

RESULTS

Centered Root-Mean-Square Difference

- ENVI-met is the most precise model, followed by the Grasshopper component and VTUF-3D.
- ENVI-met tend to underestimate nighttime T_{mtb} while Grasshopper and VTUF-3D are able to reproduce them more accurately.
- When sunlit, estimated the T_{mrt} is influenced by:
 - 1. the assumed posture of the body (f_p) ,
 - 2. T_{mrt} calculation method.
- The shape of the body should also be considered in absorbed diffuse radiation calculations.

