Coupling of CCN and INP in cloud systems important to climate: **Uncertainties and implications**

Ann Fridlind, NASA GISS www.giss.nasa.gov/staff/afridlind.html

Source: Walter Strapp

CCN and INP • climate system

elephants in our living room

- persistent evidence of efficient ice formation mechanisms that are not represented in most atmospheric models, poorly established [e.g., Koenig and Murray JAM 1976; Field et al. AMS 2017]
- huge uncertainties in *in situ* measurements (ground truth)
 - ice crystal number concentrations (now $\approx 2X$ for D > $\approx 100 \mu$ m)
 - ice-nucleating particle (INP) concentrations (now $\approx 10X$)

A world without INP (usual CCN)

-15°C < cloud top temperatures < -20°C

continuously precipitating ice

Barrow

Fridlind and Ackerman [Ch. 7 in *Mixed-Phase Clouds: Observations and Modeling*, Ed. C. Andronache, 2018]

AMS100 • Boston, MA • 13 January 2020 • ann.fridlind@nasa.gov

M-PACE [Klein et al. 2009]

LES model intercomparison studies

Field	Observation	Cloud Top	Cloud Temp. (C)		Path (g m ^{-2})	
Campaign	Period (UTC)	Height (m)	Top	Base	Liquid	Ice
SHEBA	7 May 1998	500	-20°	-18°	5-20	0.2 - 1
M-PACE	9–10 Oct. 2004	1000	-16°	-9°	110 - 210	8-30
ISDAC	26 April 2008	800	-15°	-11°	10-40	2-6

Fridlind and Ackerman [Ch. 7 in *Mixed-Phase Clouds: Observations and Modeling*, Ed. C. Andronache, 2018]

AMS100 • Boston, MA • 13 January 2020 • ann.fridlind@nasa.gov

Conc. (cm^{-3}) Drops Ice 200 $\sim \! 0.0005$ ~ 0.01 40 ~ 0.001 200

ISDAC intercomparison

DHARMA-2M SAM-2M METO COSMO UCLALES UCLALES-SB RAMS WRFLES WRFLES-PSU

- \ll DHARMA-bin
- SAM-bin \blacksquare

- when N_i and ice models perform well
- •

Ovchinnikov et al. [2014]

properties are specified, large-eddy simulation

but what maintains N_i?

Primary ice formation follows drop formation

Primary ice nucleation

- contact too slow [Fridlind et al. 2007]
- immersion INP = dominant path for primary ice formation

Mechanism	T, °C	S^a	Dependence ^b	D		
		Heterogeneous Nucleation				
Contact mode	-4 to -14	—	$f_{lin}(T)$	drop + IN _{<i>aerosol</i>} \rightarrow		
Condensation mode	-8 to -22	$S_w > 0$	$f_{lin}(T)$	vapor + $IN_{aerosol} \rightarrow$		
Deposition mode	<-10	$S_i > 0$	$f_{exp}(S_i)$	vapor + $IN_{aerosol} \rightarrow$		
Immersion mode	-10 to -24	_	$f_{lin}(T)$	drop + $IN_{drop} \rightarrow icc$		
	Ice Multiplication					
Rime splintering	-3 to -8^{d}	_	$f_{lin}(T)$	one ice crystal per 2		
Drop shattering	<0	_	_	$D_{drop} > 50 \ \mu m, mu$		
Ice-ice collision	<0	_	_	fragment number ba		
		- · · · ·		a 1		

Fridlind et al. [2007, 2012]

escription^c

ice crystal ice crystal ice crystal e crystal

250 collisions ltiplication factor of two ased on momentum change

INP consumption

- ice crystal lifetime ~ 1 h
- PBL mixing time $\sim 1 \text{ h}$
- should expect N_i << INP
- opposite pattern in M-PACE

 $H dN_i/dt = w_e N_{\rm IFN} - v_f N_i = 0$ $N_i / N_{\rm IFN} = w_e / v_f << 1$

Fridlind and Ackerman [2018], see also Harrington and Olsson [2001]

NIFN

SHEBA

Rangno and Hobbs [JGR 2001]

(b) Moderately Supercooled Stratiform Clouds (Tops -10° to -20°C)

TYPE IV

Coupling of CCN and INP in drizzling clouds

- CCN \rightarrow N_d
- LWP/N_d \rightarrow drizzle •
- $N_i \sim f(INP, 1/CCN)$
- otherwise $N_i \sim f(INP)$ •

Mixed-phase stratiform clouds

- $N_i >> INP$ (opposite expected) when drizzling
 - outside of Hallett-Mossop temperature range
 - not explained by existing mechanisms (sufficient lab data)
- two recent papers focus generally on this knowledge gap, review potentially active mechanisms [Field et al. 2019, Korolev et al. ACP 2020]
- new observations of multiplication
 - SOCRATES
 - long-term remote-sensing [Luke et al., this mtg]

$D < \sim 100 \ \mu m$ highly uncertain

in situ measurement uncertainties > 2X

10

10

O'Shea et al. [JGR 2016]

Tropical mesoscale convective system (MCS)

- High Altitude Ice Crystals / High Ice Water Content (HAIC/HIWC) campaign
 - mass dominated by $\approx 300-600 \mu m$ ice
 - size weakly correlated with IWC
 - capped columns common

Ackerman et al. [ACP, 2016]

AMS100 • Boston, MA • 13 January 2020 • ann.fridlind@nasa.gov

Leroy et al. [JTECH, 2017]

Tropical deep convection (MCS conditions)

- How do you make a mass size distribution peak at D_{eq}≈300 µm? 100.0
 - $\approx 1 \text{ cm}^{-3} \text{ ice crystals}$ warmer than -10°C [cf. Lawson et al. 2015, ICE-T]

Ackerman et al. [ACP, 2016]

pseudo-Hallet-Mossop 1 cm³ 2 cm³ 3 cm³

immersion INPs "pseudo-Hallet-Mossop"

Springtime in Oklahoma during MC3E

- similar conditions as HAIC/HIWC
- despite grossly differing updraft strength
- similar errors in model physics
- see also Shpund et al. [2019] ...

Tropical MCS and mid-latitude frontal clouds

- Korolev et al. [ACP 2020]
 - examined flight legs at $-15 < T < 0^{\circ}C$
 - state-of-the-art instrumentation
 - pristine faceted crystals D < 60 μ m
 - best estimate N_i >> INP
 - drops D > 40 μ m necessary but not sufficient
 - graupel or rimed particles often missing
 - points to drop shattering [e.g., Lauber et al. 2018]
 - recirculation (CCN-decoupled)

Conclusions

- Mixed-phase stratiform clouds [Fridlind and Ackerman 2018] $- N_i >> INP$ when drizzling via uncertain mechanism(s)
- Deep convection with stratiform outflow [Fridlind et al. 2017]
 - stratiform N_i apparently dominated by warm-temperature multiplication
 - homogeneous freezing may dominate elsewhere [e.g., Stith et al. 2014]
- Strategies for progress [cf. Morrison et al. JAMES, submitted]
 - more laboratory studies of ice multiplication (repeatable results)
 - improved in situ instrumentation, in wider use (esp. $D_i < \sim 100 \mu m$)
 - observationally driven modeling studies with prognostic CCN and INP
 - elephants in the room \rightarrow major uncertainties in simulated glaciation, lifetime, radiative effects, sensitivity to CCN and INP

Thanks for listening!

feedback welcomed •

