
 

 

1.  INTRODUCTION 
 

Post-processing of numerical models for 
climate and extended range weather forecasting 
differs from that of shorter ranges. Post-processing 
of weather forecasts focuses on calibrating models 
to observations related to specific synoptic scale 
events. A climate forecast, on the other hand, 
focuses on the range and frequency of obser-
vations that are associated with a large ensemble 
of synoptic scale events that are individually 
unpredictable at long lead times. At intermediate 
ranges, referred to here as ‘extended range 
weather forecasts’, the skill in predicting individual 
synoptic scale events diminishes to the point that it 
becomes advantageous to predict conditions for 
multi-day periods.  Thus, forecasts in these ranges 
transition in character from weather to climate 
forecasts. 
 

The evolution of operational post-processing 
techniques used for climate and extended range 
weather forecasts will be examined in this paper.  
Extended ranges will be defined here from the 
standpoint of weather prediction skill in the 1970’s 
when operational numerical weather prediction 
(NWP) models matured enough to predict weather 
at both the surface and upper levels beyond a few 
days. In 1970 the U.S. Weather Service extended 
its daily forecasts to 5-days, (O’Connor, 1980) 
leaving lead times of 6-days and beyond as 
extended ranges. In December, 1977 the Meteor-
ological Operations Division of the U.S. Weather 
Service issued its first extended range forecast for 
leads beyond 6 days (Figure 1) (Andrews, 1977). 
The 6-10 day outlook has been issued cont-
inuously since that date and will be examined 
closely here.   
 
.2. ORIGINS 
 
      In 1935, the U.S. Weather Bureau, together 
with the U.S. Department of Agriculture, funded 
research to predict weather beyond the 1 to 2 day 
lead times issued by forecasters at the time.  Dr. 
Jerome Namias (Figure 2) led a team of scientists 

at the Massachusetts Institute of Technology to 
investigate and develop methods of extended 
range forecasting (Namias, 1943). 
 

After initial attempts, the team abandoned 
efforst to predict daily weather in favor of predicting 
mean conditions over multi-day periods. Five-days 
was chosen as an optimum period to filter out the 
unpredictable short-wave systems and focus on 
the more predictable long wave patterns.  
Extended range forecasts for mean temperatures 
and precipitation totals in the 2-6 day period were 
first issued in 1941.  
 

In a 1953 publication, reflecting on those early 
efforts, Namias, when comparing short term 
weather forecasts to extended ranges, stated: 
 
“In extended forecasting, on the other hand, one is 
not so much concerned with the individual features 
of the daily map, cyclones or even upper-level 
waves, as with the hemispheric ensemble of 
atmospheric circulation that has been evolving 
over a long period of time.”  (Namias, 1953, pg 2.) 
 
 This statement clearly expressed the 
philosophy that formed the basis of extended 

Fig. 1.   Jim Andrews and George Cressman announce 
the implementation of the 6-10 day forecast.  December 
14, 1977 
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range forecasting through at least the 1990s, and 
influenced the design of early model post-
processing at extended ranges. Individual weather 
systems that were unpredictable by the technology 
at the time were filtered out by employing multiple 
day means.  Emphasis was placed on upper level 
circulation; the 10,000 foot pressure levels in the 
1930’s, and later the 700-hpa heights, and its 
relation to surface weather. 
  

In the absence of numerical weather 
prediction models Namias’ team focused on 
graphical techniques to predict the relatively slowly 
evolving upper level waves and the associated 
surface weather. Surface conditions were 
predicted by statistical relationships between 
upper level information and surface weather 
elements.   
 

The forecasting methods used for the 6-10 
day forecasts issued in the 1970’s were influenced 
largely from the experiences gained in over 35 
years of 2-6 day forecasting. The forecast format 
itself was directly inherited from the early forecasts.  
Both the 2-6 day and 6-10 day products were for 
mean temperature and total precipitation in 5-day 
periods. Both express anomalies in terms of broad 

categories and were compared to climatological 
distributions.  
 

It should come as no surprise that the expe-
rience gained from extended range forecasting for 
the 2-6 day forecast would be applied to days 6-10 
when NWP extended the useful daily prediction 
ranges to 5-days.   
 
3. EARLY POST-PROCESSING 
 
 Figure 3 shows a graphical technique devel-
oped for the 2-6 day forecast by the Extended 
Range Forecast Group of the Weather Bureau in 
the 1950’s. This figure was reproduced from the 
review of the early 30-day forecasts (Namias, 
1953). At that time the 30-day forecasts were 
based heavily on techniques developed for 5-day 
forecasting.  
 

Mean temperature anomalies at forecast 
locations were linked to 5-day mean 700-hpa 
heights. Temperatures were related not only to 
conditions overhead, but also to anomalies at so 
called “centers of action” upstream. The figure on 
the right shows the upstream points at the head of 
the lines that associate with downstream anom-
alies for location their tails. Centers of action were 
based on correlations between upper level heights 
and mean temperatures at the forecast location. 
Correlations between 700-hpa heights and 
temperatures at Evansville, IN are shown on the 
leftmost panel in Figure 3. Contoured surface 5-
day mean temperatures relating height anomalies 
overhead and at the remote location formed the 
basis for the prediction (Center frame).      
 

These graphical techniques were emulated in 
early post-processing of NWP in the late 1950’s in 
statistical relationships developed by William Klein 
(Klein et al., 1959). These “Klein Specifications” 
were regression equations based on concurrent 

Fig. 2.  Jerome Namias in the late 1960’s 
 

Fig. 3. A graphical technique developed for 5-day mean temperature forecasts.  See text.  Reproduced from Figures 15-17, 
Namias, 1953.  
 



 

 

observations of heights and temperatures and 
were applied to forecasts from early models of the 
time and are among the first examples of routine 
numerical post-processing of NWP output.  
(Namias and Collaborators, 1958). Short term 
regression bias corrections were often applied to 
the model heights prior to application of Klein 
specifications. (Harnak, 1986) 
  
   Analog specification methods were used for both 
temperature and precipitation forecasts.  
Composite means or totals for each element were 
computed from the dates of the approximately 20 
past cases that correlate highest with forecast 5-
day mean 500-hpa anomalies. The correlation 
domain was restricted to points over North America 
and vicinity. 
 
4. MODERN POST-PROCESSING 
 
  By the early 1990’s general circulation models 
being used for weather prediction were able to 
realistically simulate the daily circulations well 
beyond the week or so that useful predictions could 
be made. Operational climate models used to 
support CPC’s Monthly and Seasonal Outlooks 
have evolved through the years. The Coupled 
Model Project (Ji, et al. 1994) was used in the 
1990’s. This was replaced by the Climate Forecast 
System, CFS, in 2004 (Saha, et al. 2006) and 
upgraded to the CFS version 2 (CFSv2) in 2011 
(Saha, et al. 2014).  From their outset, the post-
processing of climate model output often involved 
relatively simple calibration methods, at least for 
operational use. These post-processing methods 
while relatively simple, require large amount of 
historical data that is made available through 
retrospective runs on past data, known as 
hindcasts, for as long a period as possible. 
 
4.1. Ensemble Mathematics 
 
 The relatively simple calibration methods 
commonly used on climate models are frequently 
quite close to an optimum linear least-squares 
solution to an ensemble forecast.  Recall that at 
climate ranges, the observations can be thought of 
as probabilistic, in the sense that they result from 
an ensemble of unpredictable individual synoptic 
scale events that collectively produce a climatic 
distribution.  Post-processing for climate ranges 
involves the preservation of the distributional 
aspects of the forecasts.  
 
   In its most fundamental interpretation, a forecast 
ensemble represents a sample drawn from a 

population of possible solutions. We will examine 
the ensemble here in terms of a non-parametric 
distribution. 
 
  The simplest calibration method is a bias correc-
tion, which may be written as follows: 
  

𝐵𝑖𝑎𝑠 = (�̅� − 𝑂𝑏𝑠̅̅ ̅̅ ̅) . 
 

Where �̅� and 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  are the respective model 
forecast and observation means on hindcast data.  
The terms can be rearranged as follows: 
 

𝐹𝑐𝑎𝑙 = 𝐹 − 𝐵𝑖𝑎𝑠 
 

𝐹 − �̅� = 𝐹𝑐𝑎𝑙 − 𝑂𝑏𝑠̅̅ ̅̅ ̅ 
 
where 𝐹𝐶𝑎𝑙 is the calibrated forecast. This can be 
rewritten as: 
 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝐹) =  𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑎𝑙(𝑂𝑏𝑠) 
 
Which reads as: The forecast anomaly relative to 
the forecast climatology, Anomaly(F), is assumed 
equal to the calibrated forecast anomaly relative to 
the climatology of the observations 
(𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑎𝑙(𝑂𝑏𝑠)).   
 
 A continuous forecast distribution can be 
obtained by a kernel density estimation (KDE) 
technique (Silverman, 1986) that corrects for the 
known bias of the sample variance. An N-member 
ensemble might be regarded as a sample of the 
larger unknown population of solutions.  The N-
member ensemble spread is a biased estimate of 
the likely variance of the population of solutions. A 
Gaussian kernel applied around each member can 
be used to help estimate the forecast distribution.  
The Gaussian kernel width can be obtained by 
calculating the amount required to compensate for 
the bias in sample variance. In the following 
relationships, 𝜎𝑝 and 𝜎𝑠  are respectively the 

sample and population standard deviation, and N 
is the ensemble size.  
 

𝜎𝑝 = √
𝑁

𝑁−1
𝜎𝑆  

 

𝜎𝑝
2 = 𝜎𝑠

2 +  𝜎𝑘
2 

 

𝜎𝑘 =
𝜎𝑠

√𝑁−1
                                                           (1) 

 



 

A simple bias correction can be illustrated by 
the distribution in Figure 4.  This illustrative case 
shows an ensemble forecast for the 3-month 
seasonal mean Nino 3.4 SSTs from the CFSv2 
hindcasts.  The forecast was initialized with data 
from November, 2005 and is a 3-month lead, valid 
for FMA 2006. 

  
Original forecasts are represented by the 

letter F below the x-axis and the calibrated 
forecasts are shown by “C”. The green lines 
connect the corresponding calibrated and 
uncalibrated forecasts.   The cumulative probability 
distribution function (CDF) is shown on top and the 
probability density (PDF) is shown below it. The 
distributions are obtained by KDE with the kernels 
shown in light blue lines. Kernel amplitudes are not 
drawn to scale. Kernel widths are from Eq. 1. The 
observed SST for the period is indicated by the 
vertical blue bar.  
 

Note that KDE is not commonly used in model 
post-processing and is shown here for later 
comparisons. The CDF is usually estimated by 
simple model counts or distributional assumptions 
applied to the ensemble. 

   
Table 1 shows the most common post-

processing methods applied to climate predictions. 
The error distributions for the non-regression 
based methods are obtained by KDE with kernel 
width set to correct for sample bias. 𝜎𝑒 is the 
sample standard deviations of the N=15 members, 
and is computed from the calibrated ensemble.  
This value is substituted for 𝜎𝑠 in Eq. 1. The term 
‘kernel’ in the table signifies when the error 
distributions are applied to each ensemble 
member. ‘Single’ denotes a distribution around the 
calibrated ensemble mean. 

 
For reasonably well behaved distributions, 

free from discontinuities and severe skews, 
percentile mapping is equivalent to the PDF 
correction.   Percentile mapping/PDF correction is 
among the most common post-processing 
methods for climate prediction.  It has, for example,  
been used heavily for post-processing of the North 
American Multimodel Ensemble (NMME) (Becker 
and van den Dool, 2014).   
 

It seems reasonable that numerical modelers 
seek a linear relationship between forecasts and 
observations, so one might assume that linear 
regression is an appropriate calibration tool.  Table 
1 shows that regression is similar to PDF 
calibration except that the forecast is damped 
toward climatology by the correlation coefficient 
between the ensemble mean and the observa-
tions, 𝑅𝑀.  Standard regression, however, filters 
out the case-dependent information from the 
forecast ensembles, and instead provides only a 
distribution around the ensemble mean based on 
model performance on the entire hindcast data.   
 

A least squared solution based on linear 
regression exists for the ensemble set as a whole 
(Unger, 2009). This makes use of the a priori 
assumption that ensemble members represent an 
equally likely subset of possible solutions.  With the 
assumption of equal weights, an expected value of 

 
 
Fig. 4.  Illustration of a distribution formed by a 
KDE estimate of a bias corrected ensemble 
forecast. See text for explanation. 
 

Name Formulation Error Estimate 

Bias Correction 𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝐹) =  𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑎𝑙(𝑂𝑏𝑠) 𝜎𝑒

√𝑁−1
, Kernel 

Percentile Mapping  𝐶𝐷𝐹(𝐹) = 𝐶𝐷𝐹𝐶𝑎𝑙(𝑂𝑏𝑠)  𝜎𝑒

√𝑁−1
, Kernel 

PDF Correction 𝑍(𝐹)=Z(Obs) 𝜎𝑒

√𝑁−,1
 , Kernel 

Standard Regression 𝑅𝑀𝑍(𝐹)=𝑍𝐶𝑎𝑙(Obs) 𝜎𝑂𝑏𝑠 √1 − 𝑅𝑀
2 , Single 

Ensemble Regression 𝑅𝐵𝑒𝑠𝑡𝑍(𝐹)=𝑍𝐶𝑎𝑙(Obs) 𝜎𝑂𝑏𝑠 √1 − 𝑅𝐵𝑒𝑠𝑡
2 , Kernel 

 
   Table 1.  Mathematical Formulations of Post-processing methods used for Extended Range forecasting.  



 

 

the best-member (closest to the observation) 
correlation coefficient, 𝑅𝐵𝑒𝑠𝑡, can be estimated 
statistically as: 
 

𝑅𝐵𝑒𝑠𝑡 =
𝑅𝑀

2

𝑅𝑖
 

   
   Where 𝑅𝑖 is the correlation between the set of all 
individual ensemble members and the observation 
on hindcast data. The best member correlation 
damps the individual ensemble members always to 
a lesser extent than standard linear regression, 
because it accounts for the variance predicted by 
the ensemble spread. The regression error 
estimate is applied to each regression-calibrated 
member of the ensemble and takes the form of a 
KDE estimation with kernels determined 
statistically.    
 

The ensemble mean is an indication of the 
signal while the ensemble spread represents the 
predicted component of the noise. The kernel 
distributions are the residual component of the 
noise, not already accounted for by the ensemble 
spread. The mean ensemble spread represents 
the model’s estimate its own skill, and if it’s 
realistic, 𝑅𝐵𝑒𝑠𝑡, approaches 1 and the least squared 
solution approaches a PDF correction. If the 
overall forecast variance (of individual members) is 
close to that of the observation, a PDF correction 
becomes nearly equivalent to a bias correction. 
 

Figure 5 shows a PDF correction for the 
forecast shown in Figure 4.  Figure 6 illustrates a 
comparison of the distribution estimate from a PDF 
correction, standard regression and ensemble 
regression.  It shows that a simple PDF correction 
in this case is quite close to the ensemble 

regression-based distribution.  In this case both the 
PDF and ensemble regression method out-
performed a standard regression (as measured by 
the forecast probability density near the 
observation) because they retained information on 
the clustering of solutions in the ensemble 
forecasts.  

  
PDF corrections/Percentile Mapping and 

simple bias correction are frequently used for post 
processing of extended range forecasts.   Major 
systems that rely upon bias correction alone 
include the NAEFS ((Candille, et al. 2010, Cui et 
al. 2012), and the CFSv2 for some elements 
(Saha, et al. 2014).  
 
4.2. Impact on the 6-10 day forecasts 
 

Post-processing methods used for the climate 
models began to be used for shorter range fore-
casts at CPC around 2014.  Figure 7 shows the 
impact that these modern methods had on the skill 
of the official 6-10 day temperature forecasts.  Prior 
to 2014, temperature forecasts were primarily 
based on subjectively modified Klein specifica-
tions.  Recent forecasts are based on a blend of 
bias corrected models output, ensemble regres-
sion, Klein specification and analogs. The older 
tools are lightly weighted and appear because they 
are the last remaining tools that specifically 
account for observation-based large-scale 
teleconnections. 
 

The skill metric used for Fig. 7 is the 3-
category Heidke Skill Score (Jolliffe and 
Stephenson, 2012) and ranges between -.5 and 1, 
with a skill score of 1 for a perfect forecast and 0 
for predictions that are no better than random  

 
 
Fig 5.  Same as Fig. 4 except for a PDF 
Correction. 
 

 
Fig. 6. Same as Fig. 4 except for ensemble 
regression, and PDF correction.  The C values 
plotted are for ensemble regression. 

 



 

 
Fig. 7.  Time series of CPC official 6-10 day 
temperature forecasts (Red) and major 
guidance tools. 
 

forecasts. A near discontinuous upward jump in 
skill in 2015 shows the improvement due to the 
newer post-processing methods based on cali-
brated model output.  The skill of the Klein specif-
ication equations (blue) in recent years remained 
about the same as manual forecasts of the early 
2000’s when the specifications were the primary 
source of temperature guidance. 
    

A simple bias correction of the NCEP Global 
Forecast System (GFS) ensembles (green) is just 
as skillful as both the official forecast, and the skill 
of the ensemble regression (ensemble regression 
skill is not shown because it is very similar to both 
the official and bias corrected GFS). Uncalibrated 
GFS (Cyan) is not competitive, being only slightly 
more skillful than the Klein specifications.  
 

The improvement afforded by modern post-
processing methods is even more evident in 
precipitation forecasts.  Figure 8 shows the skill of 
the official precipitation forecasts (green).  Scores 
plateaued following the introduction of ensemble 
model predictions in the 1990’s remained at nearly 
the same levels until ensemble regression post-
processing was introduced in 2015. The skill of the 
GFS model post-processed by ensemble regres-
sion is shown in cyan on this figure. In contrast to 
temperatures, simple bias correction of the GFS 
forecast (Cal GFS, red) is not competitive with 
precipitation forecasts from ensemble regression.  
The skill of analog forecasts (black) were never a 
competitive tool compared to the skill of the manual 
forecasts for precipitation. Before 2014 manual 
forecasts for precipitation were largely based on 
forecaster judgement using analogs and model 
forecast precipitation, so it is not surprising that the 

calibrated GFS forecast skill is about at the level of 
the official forecast prior to the introduction of 
ensemble regression.  
 
5. CURRENT DEVOLOPMENTS 
 

Current efforts to improve post-processing of 
extended range weather and climate forecasts in 
operational setting focus on three issues.  First is 
the blending of information from a variety of 
models. Improvements in communications has 
enabled access to models run at a variety of 
weather forecasting centers worldwide.  This led to 
considerable efforts in combining information from 
various numerical models.  Most notable in these 
efforts is the efforts to provide integrated guidance 
from the climate models that form the National 
Multi-model Ensemble (NMME). (Becker et al., 
2014).   
 
      Secondly, a focus on post processing methods 
that directly calibrate the probabilities from the 
ensemble forecasts to specific forecast elements.  
While the bias correction, percentile mapping, and 
ensemble regression frequently produce reliable 
probabilities, there is no guarantee of it. Probability 
Anomaly Correlations, PAC, (van den Dool et al., 
2017) have successfully been used to improve the 
reliability extended range forecasts.   
 
   Finally, the methods discussed so far are point-
by-point calibrations based on direct model output.  
These methods cannot correct biases and 
inaccuracies in the placement of mean synoptic 
scale features. Models can occasionally miss or 
distort major features, such as the teleconnection 

 
Fig. 8.  Time series of CPC 6-10 day 
precipitation outlook (Green) together with 
major tools. 
 
 



 

 

patterns in upper level heights, or known patterns 
associated with ENSO, for example  
 
    Bayesian post-processing techniques (Wang et 
al. 2009) are being investigated to revise the output 
of climate models based on observations (such as 
observed or predicted ENSO states or the 
Madden-Julian Oscillation) or even to estimate 
weighting for different models in a multi-model  
ensemble. This method is used to incorporate 
information from other sources into climate and 
extended range forecasts.  Bayesian methods 
have been successfully used to help revise climate 
model predictions (Strazzo, et al. 2019). 
  

 Figure 9 shows an example of the extensive 
use PAC calibration to produce a unified forecast 
info-rmation from a series of climate and statistical 
models used for seasonal predictions,  The initial 
model calibration may be from percentile mapping, 
ensemble regression or Bayesian processing.  
These are then individually calibrated at each step 
in the consolidation process to improve reliability. 
  
6. SUMMARY 
 
  Model post-processing for extended ranges 
has evolved from early efforts that were based on 
filtering daily weather systems to modern systems 
incorporate information from large forecast ensem-
bles. Climate model post processing focus 
primarily on relatively simple calibration of model 
distributions. These are often close to a least-
squared linear fit to the data.  These techniques are 
now being used on the extended range weather 
forecasts.  The shift from older methods to reliance 
on the direct calibrated model output resulted in 
notable increases in the skill of 6-10 day forecasts.  

 
Further improvements are provided by PAC 

calibration to improve reliability of the forecasts.  
Bayesian processing methods are also being 
investigated to revise model predicted distribution 
of forecast elements to better reflect information 
from observations such as teleconnection patterns 
associated with large scale climate anomalies.  
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