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Abstract—Numerical simulation of weather is
resolution-constrained due to the high computational cost
of integrating the coupled PDEs that govern atmospheric
motion. For example, the most highly-resolved numerical
weather prediction models are limited to approximately
3 km. However many weather and climate impacts
occur over much finer scales, especially in urban areas
and regions with high topographic complexity like
mountains or coastal regions. Thus several statistical
methods have been developed in the climate community
to downscale numerical model output to finer resolutions.
This is conceptually similar to image super-resolution
(SR) [1] and in this work we report the results of
applying SR methods to the downscaling problem. In
particular we test the extent to which a SR method
based on a Generative Adversarial Network (GAN)
can recover a grid of wind speed from an artificially
downsampled version, compared against a standard
bicubic upsampling approach and another machine
learning based approach, SR-CNN [1]. We use ESRGAN
([2]) to learn to downscale wind speeds by a factor of 4
from a coarse grid. We find that we can recover spatial
details with higher fidelity than bicubic upsampling or
SR-CNN. The bicubic and SR-CNN methods perform
better than ESRGAN on coarse metrics such as MSE.
However, the high frequency power spectrum is captured
remarkably well by the ESRGAN, virtually identical
to the real data, while bicubic and SR-CNN fidelity
drops significantly at high frequency. This indicates that
SR is considerably better at matching the higher-order
statistics of the dataset, consistent with the observation
that the generated images are of superior visual quality
compared with SR-CNN.

I. MOTIVATION

(Note: We use ML terminology, where downsampling
= upscaling and upsampling = downscaling.) Global
climate models are limited to ~100 km resolution, while
numerical weather prediction models that produce daily
forecasts and severe weather warnings are limited to
~3 km. However, accurate assessment of climate and
extreme weather impacts near human populations would
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benefit substantially from finer resolution. While several
methods have been developed for downscaling climate
models output to finer resolutions, they consist for the
most part of complex interpolation methods (see e.g.
[3]). In this paper we explore a machine learning method
to downscale weather model output using a Generative
Adversarial Network (GAN) developed originally for
the purpose of image super-resolution (ESRGAN).

Machine learning approaches have only recently
started to receive attention in the earth sciences com-
munity [4]. Over traditional numeric-based approaches,
they could address some key issues in climate modeling:

1) A ML pipeline trained end-to-end that automat-
ically learns optimal filters and transformations
between inputs (i.e., remote-sensing, in-situ, and
simulation data) and their relationship to the
spatiotemporal estimate of parameters of interest
(e.g., wind intensity, precipitation), can drastically
accelerate the creation of practical ad-hoc relation-
ships between observational datasets and models.

2) An end-to-end differentiable model will allow for
the exploration of climate model sensitivities that
lead to bias including the influence of the me-
teorological forcing dataset. Slight perturbations
in precipitation phase, intensity, and/or location,
shortwave and longwave radiation, wind speed
and direction, humidity, and, temperature, could
be used to understand the downstream implications
on variables that are difficult to measure or model
directly.

3) Generative models can be run in parallel, and
do not necessarily require iterative schemes to
model data, allowing them to run quickly even on
low-grade consumer hardware.

II. METHODS AND DATA

A. Dataset

We use 15 years of wind velocity fields from a
numerical simulation of the WRF (Weather Research
and Forecasting) model over Southern California (see
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Fig. 1: Example wind speeds from the WRF model output, shown every 4 hours over 1 day.

(a) Real vs. ESRGAN vs. SR-CNN vs. Bicubic Upsampling.
Each row is for one image.

(b) Zoomed view of marked region above.

[5] for details on model setup - we use region d04 from
2001-2015), gathered hourly, for a total of about 60,000
data points, represented as grids. In the rest of this work,
we shall call these grids "images".

Each image is of size 153 × 153, where each pixel
represents the average wind speed over a 1.5 km × 1.5
km region. They are stored as a 2-D array of 32-bit
floats, linearly scaled to [0, 1] to be compatible with
image processing frameworks. For ease of upsampling,
we clip a single row and column to resize our images
to 152× 152. We also combine the south to north and
east to west components of the wind vector to model
total wind speed rather than modeling each direction’s
velocity separately.

The dataset is then shuffled and split, with 5% (3,000

images) held out for validation.

B. Method

Note that all experiments were run on a stock HP
Z420 with an NVIDIA GeForce RTX 2070 GPU.

1) Bicubic Upsampling: Bicubic interpolation is a
common algorithm used for upsampling, useful as a
baseline to compare against. There are no trainable
parameters, so we simply upsample our validation set.

2) SR-CNN: SR-CNN is a popular deep-learning
based approach to image SR. A low-resolution image is
first upsampled to the desired size by another method,
such as bicubic interpolation. It’s then passed through a
CNN, which outputs an image that is compared against
the ground truth image via mean-squared error (MSE).
(See 3 for a high-level pictorial overview.)

We train for 100 epochs with a batch size of 128, the
Adam optimizer, and a learning rate of 0.001. For the
upsampling step, we use bicubic upsampling. Validation
is performed at the end of training.

The model has about 8,000 trainable parameters, a
relatively small number by modern standards, so training
is quick. It can process about 730 images per second, so
training takes about 2 hours with an RTX Titan 2070.

3) ESRGAN: ESRGAN is an optimized version of
SRGAN, which we shall describe here. SRGAN is a
conditional GAN designed for image SR. Its training
procedure involves passing the generator G a batch of
low-resolution images, which are upsampled by G and
then passed to the discriminator D. D is also given
the ground truth images for the batch, and attempts to
distinguish between them. An optimization particular to
SRGAN is that it also has a "content loss", where in
addition to the discriminator, there is another network,
typically a CNN pretrained on ImageNet. This "feature
network" passes both the generated and ground truth
images through it, and then both are compared via MSE.
The idea is that a pretrained network will have cap-
tured the higher-level dynamics of perceptual similarity.
However, since our images do not represent natural
images and we do not have an equivalent of ImageNet
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Fig. 3: Overview of models used.

TABLE I: Results

Model PSNR MSE MAE KL

ESRGAN 32.74 0.00053 0.0148 0.008
SR-CNN 36.06 0.00024 0.0091 0.015
Upsampling 35.52 0.00027 0.0097 0.006

to perform supervised learning on, it is inappropriate
to use content loss, so we remove it. Otherwise, our
training is virtually identical to the methodology outlined
in [2].

We use a batch size of 12 images and train for
100 epochs. The model has about 25 million trainable
parameters, so training is far slower than SR-CNN. Each
epoch takes about 35 minutes to complete, and training
takes about 2.5 days.

III. EVALUATION

Table I gives an overview of final performance on
the validation set. PSNR (peak signal to noise ration),
MSE and MAE (mean absolute error) are averaged over
all images in the validation set. "KL" represents the KL
divergence between the empirical distributions of the
generated images and the ground truth.

Fig. 4: Note that ESRGAN tracks the true data far more
closely than the other models.
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Notice that SR-CNN performs best on most metrics,
and ESRGAN the worst.

But the generated images tell a quite different story.
As we see in Figure 2a, ESRGAN generates clearer
images than the other methods. Zooming in on the
highlighted red box (Figure 2b) reveals that the image
generated by ESRGAN are sharper and less prone to
artifacts. PSNR and MSE have been noted in other
works to be poor indicators of image quality, as they
fail to capture the underlying dynamics of images well.

A key metric that illustrates the spatial resolution
and higher moments of the data distribution is the
power spectral density, shown in Figure 4. The power
spectrum reveals the power of ESRGAN in capturing
the high frequency information present in the wind
field. In fact, remarkably ESRGAN’s spectrum is so
close to that of the true data that they are nearly
indistinguishable, whereas SR-CNN and bicubic upsam-
pling fall off significantly at higher frequencies. This is
perhaps not surprising as the upsampling and SR-CNN
are fundamentally methods of interpolation, whereas
ESRGAN is learning the data distribution at all scales.
These results suggest that ESRGAN is able to capture far
more of the underlying spatial structure, and that while
SR-CNN may be doing better than bicubic upsampling,
it is not learning the distribution of the true data, but
rather that of the upsampled version.

IV. FUTURE WORK

As seen in this work, ESRGAN does a good job
reproducing single images. However, we do not currently
deal with a sequence of images over time or space. For
example, capturing the effects of winds over a larger
surrounding region, e.g. from a coarse climate model,
would help in regional climate prediction. In addition,
being able to capture a sequential time series would also
be. Both will be the goal of future work.

We also plan to incorporate additional variables such
as temperature and pressure, and to see if models based
on attention mechanisms can improve accuracy..
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