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Abstract 32 

The pioneering study of Lorenz in 1963 and a follow-up presentation in 1972 changed our 33 

view on the predictability of weather by revealing the so-called butterfly effect, also known as 34 

chaos. Over 50 years since Lorenz’s 1963 study, the statement of ``weather is chaotic’’ has 35 

been well accepted. Such a view turns our attention from regularity associated with Laplace’s 36 

view of determinism to irregularity associated with chaos. Stated alternatively, while Lorenz 37 

(1993) documented that “as with Poincare and Birkhoff, everything centers around periodic 38 

solutions,” he himself and chaos advocates focused on the existence of non-periodic solutions 39 

and their complexities. Now, a refined statement is suggested based on recent advances in high-40 

dimensional Lorenz models and real-world global models. In this study, we provide a report 41 

to: (1) Illustrate two kinds of attractor coexistence within Lorenz models. Each kind contains 42 

two of three attractors including point, chaotic, and periodic attractors corresponding to steady-43 

state, chaotic, and limit cycle solutions, respectively. (2)  Suggest that the entirety of weather 44 

possesses the dual nature of chaos and order associated with chaotic and non-chaotic processes, 45 

respectively. Specific weather systems may appear chaotic or non-chaotic within their finite 46 

lifetime. While chaotic systems contain a finite practical predictability, non-chaotic systems 47 

(e.g., dissipative processes) could have better predictability (e.g., up to their lifetime). The 48 

refined view on the nature of weather is neither too optimistic nor pessimistic as compared to 49 

the Laplacian view of deterministic unlimited predictability and the Lorenz view of 50 

deterministic chaos with finite predictability.  51 

 52 

 53 

 54 
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 59 

Capsule  60 

 61 

 62 

 63 

By revealing two kinds of attractor coexistence within Lorenz models, we suggest that the 64 

entirety of weather possesses a dual nature of chaos and order. The refined view on the nature 65 

of weather is neither too optimistic nor pessimistic as compared to the Laplacian view of 66 

deterministic predictability and the Lorenz view of deterministic chaos.  67 

 68 

 69 

  70 
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1. Introduction 71 

 72 

Is weather chaotic? A view that weather is chaotic was proposed and is recognized based on 73 

the pioneering work of Lorenz (1963) who first introduced the concept of deterministic chaos.  74 

Defined as aperiodic solutions that display sensitive dependence on initial conditions (ICs), chaos 75 

is also known as the butterfly effect. The appearance of deterministic chaos suggests finite 76 

predictability, in contrast to the Laplacian view of deterministic predictability that is unlimited. 77 

After a follow-up conference presentation in 1972 (Lorenz 1972), the butterfly effect has come to 78 

be known as a metaphor for indicating that a tiny perturbation that is as small as a butterfly’s flap 79 

may generate a large impact that could create a tornado. The original Lorenz 1963 study and a 80 

1972 presentation, as well as his 1969 study (Lorenz 1969), laid the foundation for chaos theory 81 

that is viewed as one of the three scientific achievements of the 20th century, inspiring numerous 82 

studies in multiple fields, including earth science, mathematics, philosophy, physics, etc. (Gleick 83 

1987). 84 

 85 

While the finding of a chaotic attractor has suggested a finite predictability for weather over 86 

the past fifty years, such chaotic solutions indeed occur over a finite interval of time-independent 87 

parameters within the Lorenz model. Therefore, other features of the original Lorenz model and 88 

generalized Lorenz models that were discovered in subsequent studies (Guckenheimer and 89 

Williams 1979; Sparrow 1982; Smale 1998; Tucker 2002; Musielak et al. 2005; Roy and Musielak, 90 

2007; Yang and Chen 2008; Sprott et al. 2013; Moon et al. 2017, 2019; Felicio and Rech, 2018; 91 

Shen 2014-2017, 2019a) should be taken into consideration in order to reveal the true nature of 92 

weather. For example, in addition to chaotic solutions, other types of solutions indeed appear over 93 

different intervals of parameters within the Lorenz model (Sparrow 1982), but their role in weather 94 
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has been overlooked. Furthermore, as emphasized by recent studies using a generalized high-95 

dimensional Lorenz model (e.g., Shen 2019a; Shen et al. 2019; Reyes and Shen 2019), two types 96 

of solutions (e.g., chaotic and non-chaotic solutions) may coexist within the same model 97 

parameters but for different ICs (e.g., Sprott et al. 2005; Sprott and Xiong 2015). Such a 98 

coexistence indicates the possibility of a dual nature for chaos and order for weather. Thus, it is 99 

important to understand whether or not and how other types of solutions and their coexistence may 100 

help illustrate a more comprehensive view on the nature of weather, and improve our 101 

understanding of chaotic and non-chaotic processes within different types of solutions. Stated 102 

alternatively, we may ask whether the statement of ̀ `weather is chaotic’’ that exclusively considers 103 

chaotic solutions is realistic. In this study, a specific type of solution is referred to as an 104 

``attractor’’, defined as the smallest attracting point set that cannot be decomposed into two or 105 

more subsets with distinct regions of attraction (e.g., Sprott et al. 2013).  106 

 107 

To address the above, here, we provide a review of major solutions using the Lorenz model 108 

(LM), including three types of solutions (i.e., three attractors) and one kind of attractor coexistence. 109 

We then summarize our recent findings for two kinds of attractor coexistence using a newly 110 

developed, generalized, high-dimensional LM (GLM) (e.g., Shen 2019a). Based on an analysis of 111 

the Lorenz model and the GLM, we suggest a refined view on the dual nature of weather. 112 

Concluding remarks are provided at the end. Using a realistic value for the Prandtl number 113 

(i.e.,	� = 1) within the Lorenz model, Supplemental Materials are presented in order to support 114 

the findings for two kinds of attractor coexistence.  115 

 116 

2. The Lorenz 1963 Model 117 
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 118 

In his 1963 study, Prof. Lorenz presented an elegant system of three ordinary differential 119 

equations (ODEs) using three parameters derived from the governing equations for the Rayleigh-120 

Benard convection (e.g., Saltzman 1962; Lorenz 1963). The three ODEs describe the time 121 

evolution of three variables, X, Y, and Z, as follows: 122 

��

��
= �� − ��,																																										(1) 123 

��

��
= −�� + �� − �,																														(2) 124 

��

��
= �� − ��.																																									(3) 125 

Here,	τ	is dimensionless time. The three, time-independent parameters are	σ, r,	and b.  The first 126 

two parameters represent the Prandtl number and the normalized Rayleigh number (or the heating 127 

parameter), respectively. The third parameter is a function of the ratio between the vertical scale 128 

of the convection cell and its horizontal scale.  X, Y, Z 		represent the amplitudes of the three 129 

Fourier modes for dynamic and thermodynamic variables (e.g., Table 1 of Shen 2014). 130 

Specifically, X represents the amplitude of the stream function, and Y and Z represent the 131 

amplitudes of the temperature deviation. Equations (1)-(3) contain three types of physical 132 

processes, including buoyancy/heating, dissipative, and nonlinear processes. The linear buoyancy 133 

force and the heating force are represented by σY in Eq. (1) and rX in Eq. (2), respectively. The 134 

three dissipative terms are – σX, −Y, and – bZ and are ignored under the dissipationless condition. 135 

The two nonlinear terms, −XZ and XY, are derived from the nonlinear advection of the temperature 136 

term within the governing equation for the Rayleigh-Benard convection (e.g., Saltzman 1962). 137 

With the exception of the heating parameter (r), the following parameters are kept constant: σ =138 

10 and b = 8/3. A choice of σ = 1 and b = 2/5	is also discussed in the Supplemental Materials. 139 
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In additional to control runs, parallel runs with ICs that consist of control run ICs and tiny 140 

perturbations (∈= 10ABC) or finite perturbations (∈	= −0.9)	are performed in order to reveal the 141 

difference of two solutions between the control and parallel runs. 142 

 143 

Using the state variables X, Y, and Z as coordinates, a phase space can be defined for the 144 

analysis of solutions. Therefore, the dimension
1
 of the phase space is equal to the number of time-145 

dependent variables or the number of ODEs. Equations (1)-(3) with three variables are referred to 146 

as a three-dimensional Lorenz model (3DLM). High-dimensional LMs contain more than three 147 

variables (e.g., Shen 2014). To display a solution effectively, its time varying components are 148 

plotted within the phase space, which is referred to as an orbit or a trajectory.  149 

 150 

Lorenz’s Chaotic and Non-Chaotic Attractors 151 

 152 

Depending on the competitive or collective impact of nonlinear processes and linear heating 153 

and dissipative processes, measured by values of the three parameters, various types of solutions 154 

(i.e., different attractors) appear within the Lorenz model. Historically, the dependence of their 155 

appearance on the strength of heating measured by the normalized Rayleigh parameter (r) has been 156 

a focus. Steady-state, chaotic, and nonlinear oscillatory solutions have been shown to occur under 157 

conditions of weak, moderate, and strong heating, respectively (e.g., Sparrow 1982; Drazin 1992; 158 

Ott 2002)
2
. The three different types of solutions are shown using r = 20, 28, and 350, respectively, 159 

                                                
1
 The term “dimension” is conventionally used for a system of ODEs (e.g., Hirsch et al. 2013; Thompson and Stewart 

2002). In this study, the 5DLM and 7DLM are referred to as high-dimensional or high-order Lorenz models (e.g., 

Moon et al. 2017).  
2
 Similar findings for the dependence of various solutions (i.e., chaotic and limit cycle solutions) on the strength of 

heating were also reported using a two-layer, quasi-geostrophic model that describes the finite-amplitude evolution 

of a single baroclinic wave by Pedlosky and Frenzen (1980). 
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in Fig. 1. The top panels display solutions for control runs within the X-Y space, while the bottom 160 

panels display the time evolution of the Y components for both control and parallel runs. For a 161 

steady-state solution, its orbit eventually approaches a single point, that is, a non-trivial 162 

equilibrium point within the X-Y space (Fig. 1a), appearing as a point attractor; and its amplitude 163 

remains constant over time after arriving at the equilibrium point. Mathematically, equilibrium 164 

points, also called critical points, are defined as solutions of the time-independent nonlinear system 165 

(e.g., no time derivatives in Eqs. (1)-(3), Guckenheimer and Holmes (1983))
3
. When the heating 166 

parameter exceeds the critical value of rc = 24.74, the 3DLM with r = 28 displays the so-called 167 

chaotic solution or a chaotic attractor with irregular oscillations. The solution’s boundary within 168 

the X-Y space appears as a tilted “8” pattern.  Interestingly, when heating becomes larger (e.g., r = 169 

350), the system produces a nonlinear periodic solution known as a limit cycle solution or a 170 

periodic attractor, as shown in Figs. 1c and 1f. Additional details on the characteristics of nonlinear 171 

oscillatory solutions may be found in earlier studies (e.g., Shimizu 1979; Sparrow 1982; Strogatz 172 

2015) and/or recent studies (e.g., Fig. 9 of Reyes and Shen 2019).  In summary, three types of 173 

attractors, including a point attractor, a chaotic attractor, and a periodic attractor (e.g., Sprott et al. 174 

2013) appear and are associated with weak, moderate, and strong heating, respectively. Below, the 175 

impact of a tiny initial perturbation on these attractors is further discussed.  176 

 177 

Parallel runs with a tiny initial perturbation (∈= 10ABC) are compared to control runs in order 178 

to reveal the difference (also referred to as the divergence) of initial, nearby trajectories within the 179 

phase space of the 3DLM. For steady-state and nonlinear oscillatory solutions, control and parallel 180 

runs produce almost identical results, only appearing in red, for example, in Figs. 1d and 1f. The 181 

                                                
3
 In our 5D-, 7D-, and 9D LMs, we can obtain closed form solutions of trivial and non-trivial equilibrium points and 

use them to verify the numerical solutions of equilibrium points.  
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runs indicate insignificant impacts by a tiny initial perturbation. In other words, steady-state and 182 

nonlinear oscillatory solutions are insensitive to a tiny change in ICs. In comparison, within the 183 

chaotic regime, two solution orbits whose starting points are very close to each other display very 184 

different time evolutions, as clearly shown in blue and red in Fig. 1e.  The phenomenon is called 185 

the sensitive dependence of solutions on ICs. As further discussed below, such a feature only 186 

appears within a chaotic solution.  187 

 188 

Boundedness and Divergence of Chaotic Trajectories  189 

 190 

Within the chaotic regime of the 3DLM, a sensitive dependence of solutions on ICs is referred 191 

to as the butterfly effect (BE, e.g., Lorenz 1993, 2008). As shown in Fig. 2a (e.g., as discussed on 192 

page 15 of Lorenz 1993), the term ``butterfly’’ was partly used due to its geometric pattern in the 193 

Y-Z space. A butterfly pattern with a finite size and varying curvatures within the phase space also 194 

qualitatively suggests an important feature of solution boundedness. Therefore, BE means that a 195 

tiny change in an IC can produce a very different time evolution of a solution for three variables 196 

(X, Y, Z). However, the separation (or divergence) of two orbits should be bounded by the size of 197 

a butterfly pattern.  198 

 199 

The average separation (i.e., an average divergence) of nearby trajectories has been 200 

quantitatively measured using the Lyapunov exponent (LE, Wolf et al. 1985; Zeng et al. 1991, 201 

1993). A positive LE suggests an exponential rate in the averaged separation of two infinitesimally 202 

nearby trajectories over an infinite period of time (e.g., Eqs. (25)-(26) of Shen 2014). Chaotic 203 

solutions within the 3DLM, as well as high-dimensional LMs, have a positive LE. Since the LE is 204 
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defined as a long-term averaged separation, researchers often misinterpret the divergence of two 205 

nearby, but finitely separated, chaotic trajectories within the 3DLM as continuing over time and 206 

lasting forever. The misunderstanding also makes people believe that a blow-up solution is due to 207 

the divergent nature of chaos. In fact, in addition to a positive LE, solution boundedness is another 208 

major feature of a chaotic system.  Due to solution boundedness, a trajectory should recurve within 209 

the phase space (e.g., Hilborn 2000). Therefore, time-varying (local) growth rates along a chaotic 210 

orbit are observed (e.g., Zeng et al. 1993) and may become negative, as indicated by a negative 211 

finite time LE (e.g., Fig. 7 of Nese 1989; Fig. 1 of Eckhardt and Yao 1993; p. 397 of Ding and Li 212 

2007; Fig. 3 of Bailey 2011). In other words, the infinite-time limit in the definition of an LE does 213 

not imply a monotonically increasing separation between two nearby trajectories over a long 214 

period of time. Two initial nearby trajectories can quickly separate and reach the bound of their 215 

separation.  216 

 217 

Coexistence of Chaos and Order  218 

 219 

The 3DLM produces three different attractors and each attractor exclusively appears within 220 

the phase space, depending on the interval of system parameters. The 3DLM with a single-type 221 

solution suggests that either chaos or order exclusively exists.  Is this realistic? Below, we present 222 

a different scenario that two different attractors may coexist and dominate system dynamics in a 223 

separate region (i.e., a different subspace) within the phase space, referred to as the first kind of 224 

attractor coexistence. A coexistence of two different solutions, appearing within the same model, 225 

and with the same parameters, but with different ICs, has been well studied using conservative 226 

Hamiltonian systems (e.g., Hilborn 2000). By comparison, earlier studies within the forced 227 
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dissipative 3DLM (e.g., Yorke and Yorke 1979; p. 242 of Drazin 1992; p. 333 of Ott 2002) have 228 

also documented the coexistence of steady-state and chaotic solutions. However, such a 229 

coexistence only appears over a very small range of r, giving the length of an interval less than 0.7 230 

(i.e., 24.06 < r < rc = 24.74). As a result, the characteristics of the coexistence and its potential role 231 

in revealing the nature of weather has not been well explored.  232 

 233 

The 3DLM with the same parameters, including r = 24.4, � = 10, and b = 8/3, but with 234 

different ICs, was used to illustrate such a coexistence in a homework problem for the course 235 

entitled Computational Ordinary Differential Equations taught by the first author at San Diego 236 

State University during Fall 2018. As simply shown in the animation, https://goo.gl/scqRBo,  six 237 

different orbits can clearly be categorized into two types of solutions, chaotic or steady-state. 238 

Below, we apply the GLM in order to show that coexistence may appear within a wider interval 239 

of the heating parameter and suggest that attractor coexistence should be considered in order to 240 

refine the view of the nature of weather.  241 

 242 

3. The Generalized Lorenz Model  243 

 244 

Based on our recent studies (e.g., Shen, 2014-2019; Faghih-Naini and Shen 2018), we 245 

successfully developed a GLM that: (1) is derived based on partial differential equations for the 246 

Rayleigh-Benard  convection
4
; (2) allows a large number of modes, say M modes, where M is an 247 

                                                
4
 By comparison, chaotic models in Lorenz (1996/2006, 2005) were not derived from physics-based partial 

differential equations.  
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odd number greater than three; and (3) produces aggregated negative feedback
5
 that is accumulated 248 

from the feedback of various smaller-scale processes, yielding a larger effective dissipation in 249 

higher dimensional LMs (Shen 2019a; Shen et al. 2019). As a result of aggregated negative 250 

feedback, a higher-dimensional LM requires a larger critical value for the Rayleigh parameter (rc) 251 

for the onset of chaos. For example, the rc for the 5DLM, 7DLM, and 9DLM are 42.9, 116.9, and 252 

679.8, respectively, as compared to a rc of 24.74 for the 3DLM (Shen 2019a). Fig. 2 displays 253 

chaotic solutions obtained from the 3D, 5D, 7D, and 9D LMs with different heating parameters. 254 

Therefore, a tiny perturbation with the same strength may play a different role within the GLM 255 

with a different value of M, showing a dependence on the dimension (or the degree of spatial 256 

complexity associated with a various number of modes) of the GLM.   257 

 258 

Two Kinds of Attractor Coexistence  259 

 260 

The GLM with M = 5 or M = 7 (i.e., 5DLM or 7DLM) also produces three different types of 261 

solutions, including a steady-state, chaotic, and limit cycle/torus
6
. More importantly, the GLM 262 

with M = 9 (i.e., 9DLM) displays two kinds of attractor coexistence, each with two different 263 

attractors. For the first kind of coexistence, both chaotic and steady-state solutions occur 264 

concurrently with the same model and the same parameters. The only difference is their ICs. Such 265 

a coexistence shares properties similar to that of the 3DLM but appears over a wider range of the 266 

Rayleigh parameter (e.g., 679.8 < r < 1,058), as compared to the small interval (e.g., 24.06 < r < 267 

                                                
5
 Negative feedback can be found within the so-called Lorenz-Stenflo system that extends the 3DLM with one 

additional ODE containing one additional mode that takes rotation into consideration (e.g., Xavier and Rech 2010; 

Park et al. 2015, 2016).  
6
 A torus is defined as a composite motion with two (or more) oscillatory frequencies whose ratio is irrational (e.g., 

Faghih-Naini and Shen, 2018).  
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24.74) for the 3DLM. In fact, since the first kind of attractor coexistence has been overlooked for 268 

decades, we became aware of such a finding by Yorke and Yorke (1979) after observing 269 

coexistence within the 9DLM and performing a literature review.  270 

 271 

 In addition to the first kind of attractor coexistence, the 9DLM is able to produce the second 272 

kind of attractor coexistence, consisting of nonlinear, periodic (i.e., limit cycle) orbits and steady-273 

state solutions at large Rayleigh parameters (e.g., r = 1,600). The new kind of coexistence was 274 

recently documented in Shen (2019a), Shen et al. (2019), and Reyes and Shen (2019). By 275 

extending the above analysis, we now show that the 3DLM with a realistic value of � = 1 also 276 

generates two kinds of attractor coexistence, suggesting that the features are not specific to our 277 

9DLM. See additional information in the Supplemental Materials.  278 

 279 

Depending on system parameters, ICs and the dimension of the model (say the value of M 280 

within the GLM), a modeling system may contain one or more attractors
7
 (e.g., a point, chaotic, 281 

and/or periodic attractor) within the phase space. When both chaotic and regular attractors coexist, 282 

they occupy two different regions (or two different subspaces) within the phase space. Therefore, 283 

we observe two kinds of solution dependence on ICs, including (1) the dependence of solution 284 

types on ICs and (2) a sensitive dependence on ICs for chaotic solutions. The former suggests that 285 

an IC may lead to a chaotic or non-chaotic solution. The latter indicates that only chaotic solutions 286 

display sensitive dependence on a tiny, initial perturbation. We illustrate these below.    287 

 288 

Two Kinds of IC Dependence and Final State Sensitivity  289 

                                                
7
 The coexistence of chaotic and quasi-periodic orbits has been recently documented in a modified Lorenz system by 

Saiki et al. (2017).  
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 290 

Each of the three, single-type solutions exclusively appears. Among them, a steady-state or 291 

limit cycle solution has no long-term memory regarding its ICs and initial errors. Although a 292 

chaotic orbit displays the sensitivity of its time evolution to initial perturbations, its statistics (i.e., 293 

the attractor itself or the butterfly pattern within the phase space) is independent of the ICs. As 294 

long as a system’s parameters are given, the long-term statistics of the single-type solution is 295 

already determined and is independent of ICs. In comparison, when two attractors coexist in two 296 

different regions within the phase space, a different IC may lead to a different type of solution with 297 

very different statistics. Thus, the impact of a tiny initial perturbation can be very different, 298 

depending on its association with a chaotic or non-chaotic orbit.  A tiny initial perturbation may 299 

only have a short-term impact on the initial transient evolution of non-chaotic (e.g., the steady-300 

state or limit cycle) solutions or lead to a very different evolution for chaotic orbits. Below, we 301 

illustrate such an impact of ICs (i.e., the location of the starting point within the phase space) on 302 

determining an orbit’s subsequent evolution and final destination (i.e., a point attractor or a chaotic 303 

attractor).  304 

 305 

Control runs apply three sets of ICs at different locations within the phase space: close to the 306 

non-trivial equilibrium point, at the origin (i.e., a saddle point), and at point (100, 100, 100, 100, 307 

100, 100, 100, 100, 100). For parallel runs, a finite-amplitude perturbation (∈	= -0.9) is added into 308 

the ICs. In Fig. 3, solutions of the control runs are shown in blue, while results of parallel runs are 309 

displayed in green, red, or orange.  Top panels display the time evolution of Y components, while 310 

bottom panels present solutions within the X-Y space. The model with r = 680 produces the 311 

coexistence of steady-state and chaotic orbits, displaying a dependence on ICs. For the first case 312 
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(Figs. 3a and 3d) with the IC that is close to the non-trivial equilibrium point, the orbit moves 313 

toward the equilibrium point, producing steady-state solutions. Since the orbit spirals into the non-314 

trivial equilibrium point within the X-Y space, it is also called a spiral sink solution. For the second 315 

case (Figs. 3b and 3e) where an IC is close to a saddle point at the origin but away from the non-316 

trivial equilibrium point, solutions still approach the same non-trivial equilibrium point as a steady-317 

state solution, while initially displaying a different time evolution as compared to the first case. 318 

On the other hand, for the third case (Figs. 3c and 3f), the model produces a chaotic solution, 319 

different from the steady-state solution. A comparison between control and parallel runs suggests 320 

that an initial perturbation only has a short-term impact on the initial transient evolution of steady- 321 

state solutions but can lead to a very different evolution for chaotic solutions
8
. As also discussed 322 

in Fig. 5 of Shen et al. (2019a), a systematic analysis of the dependence of chaotic and non-chaotic 323 

orbits on ICs was previously performed using an ensemble modeling approach with 4,096 324 

ensemble members.  325 

 326 

While the appearance of stable solutions may suggest better predictability, a system with 327 

coexisting solutions additionally displays final state sensitivity (e.g., Grebogi et al. 1983) when 328 

ICs start near the boundary of two different attractors (i.e., solutions). As illustrated below, such a 329 

final state sensitivity creates a different challenge for predictability.   330 

 331 

Finite and Deterministic Predictability  332 

 333 

                                                
8
 Such a dependence on initial conditions, close to (or away from) the non-trivial equilibrium point, can be shown 

by the following YouTube video for a double pendulum (between 1:00-1:20): 

https://www.youtube.com/watch?v=LfgA2Auyo1A. This footnote is provided only for review.  
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The rate of a growing initial error with time has been used to determine predictability, 334 

suggesting a finite predictability in chaotic (or unstable) systems. Such a growth rate is 335 

proportional to the divergence of two nearby trajectories measured using a Lyapunov exponent. 336 

Within the chaotic regimes of the 3DLM, as well as the GLM that contains one positive LE and 337 

solution boundedness, time-varying divergence and the convergence of nearby trajectories yields 338 

time-varying growth rates and, thus, time-varying predictability. Estimated predictability over a 339 

short period should display a dependence on various initial states
9
. By comparison, when non-340 

chaotic (i.e., steady-state or nonlinear periodic) solutions appear as a single type of solution or 341 

coexist with another type of solution, their predictability should be deterministic (unlimited). As a 342 

result, when a system possesses the coexistence of chaotic and non-chaotic attractors, ICs 343 

determine whether finite or deterministic predictability may appear.  344 

 345 

4. A Refined View on the Nature of Weather  346 

 347 

Since climate and weather involve open systems, an assumption of constant parameters within 348 

numerical simulations using the 3DLM, as well as high-dimensional LMs, is not realistic and, thus, 349 

the applicability of numerical results to realistic climate or weather should be interpreted with 350 

caution. To better understand the validity of applying chaotic solutions in order to define the nature 351 

of weather, below, we provide additional comments. Within the forced dissipative 3DLM, chaotic 352 

solutions appear within a finite range of parameters (e.g., heating parameter), bounded on one side 353 

by stable, steady-state solutions and on the other side by nonlinear periodic solutions. Chaotic 354 

solutions may not be able to represent the entirety of weather. Additionally, within chaotic 355 

                                                
9
 As a result, we agree with Prof. Arakawa that the predictability limit is not necessarily a fixed value (Lewis 2005). 
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solutions, a tiny perturbation can always lead to a very different time evolution.  Stated 356 

alternatively, within the chaotic regime, the system does not have a mechanism for completely 357 

removing the impact of a tiny perturbation. Although these findings are interesting, it is reasonable 358 

to ask whether it is realistic to expect such an effect for any tiny perturbation (e.g., Pielke 2008).  359 

 360 

By comparison, within the GLM with M = 9, or higher, that possesses coexisting chaotic and 361 

steady-state solutions, a tiny initial perturbation may play a very different role. A tiny perturbation 362 

may have no long-term impact when it appears to be associated with a steady-state solution, 363 

suggesting that the perturbation eventually dissipates. On the other hand, a tiny perturbation may 364 

lead to a large impact on the time evolution of the chaotic solution. As a result, the 9DLM with a 365 

dual role for a tiny initial perturbation over a wide range of the heating parameter is more realistic 366 

than the classical 3DLM. Such a comparison indicates the need to refine our view of weather by 367 

taking the dual nature associated with attractor coexistence into consideration. To this end, we 368 

suggest, contrary to the traditional view that weather is chaotic, that weather is, in fact, a superset 369 

that consists of both chaotic and non-chaotic processes, including both order and chaos. 370 

 371 

Additional Support: Coexisting Solutions at Two Time Scales, Vacillation and Intransitivity   372 

 373 

Coexisting solutions at two time scales, which are not the same as the coexisting attractors 374 

discussed above, have also been documented in scientific literature.  Related studies additionally 375 

support the refined view on the nature of weather. For example, co-existence of fast and slow 376 

manifolds has been discussed by Lorenz (1986, 1992), Lorenz and Krishnamurthy (1987) and 377 

Curry et al. (1995).  Both types of solutions in Lorenz (1986) are non-chaotic. By comparison, fast 378 
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and slow “variables” that are chaotic may also coexist within coupled systems (e.g., Pena and 379 

Kalnay 2004; Mitchell and Gottwald 2012). In fact, an analysis using a singular perturbation 380 

method (Bender and Orszag 1978) indicates that the GLM also possesses the coexistence of slow 381 

and fast variables that correspond to large and very small spatial modes (e.g., Eq. (2) and Eq.  (4) 382 

of Shen 2019a in a high-dimension phase space).   383 

 384 

The (potential) occurrence of a nonlinear periodic solution (i.e., limit cycle) in the atmosphere 385 

was first illustrated by laboratory experiments using dishpans. Based on experiments by David 386 

Fultz (Fultz et al. 1959) and Raymond Hide (Hide 1953), Lorenz (1993) suggested three types of 387 

solutions, including (1) steady state solutions, (2) irregular chaotic solutions, and (3) vacillation. 388 

“Amplitude vacillation” is defined as a solution whose amplitude grows and periodically decays 389 

in a regular cycle (Lorenz 1963c; Ghil and Childress 1987; Ghil et al. 2010). Studies by Pedlosky 390 

and Smith (e.g., Pedloksy 1972; Smith 1975; Smith and Reilly 1977) found that amplitude 391 

vacillation can be viewed as a limit cycle solution. 392 

 393 

Some people may wonder whether the appearance of LCs (i.e., nonlinear periodic solutions or 394 

vacillation) challenges the validity of the so-called error growth model (Lorenz 1969c, 1996; 395 

Nicolis 1992; Zhang et al. 2019; i.e., a logistic equation, that has been used to analyze errors in 396 

chaotic systems). Given an initial condition with a small value, the solution of the logistic equation 397 

grows at an initial larger growth rate, then a nonlinear smaller growth rate, and eventually 398 

approaches a constant defined as a saturated error. However, for periodic solutions such as 399 

vacillation (Lorenz 1969c), the error averaged over all growing and decaying components neither 400 

grows or decays. As a result, an averaged error that grows with time appears when a large number 401 
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of growing errors and a small number of decaying errors are averaged. From the perspective of 402 

weather predictions, including a sufficiently large number of ensemble runs in order to obtain a 403 

forecast score that decreases monotonically with time is often required.  (Note that within the 404 

logistic equation, large errors, which are larger than the value at the equilibrium point, should 405 

decay nonlinearly and then linearly.) While the error model with monotonically increasing 406 

solutions may describe the statistical behavior of the system within which the majority of small 407 

errors tends to grow, the error model cannot accurately represent the transient evolution of the 408 

specific solution consisting of decaying components or periodic solutions. In short, the decaying 409 

errors that may be associated with the steady-state solutions are not explicitly included within the 410 

error growth model.  411 

 412 

In 1984, Lorenz proposed another idealized system of three ODEs for qualitatively depicting 413 

atmospheric circulation, known as the Lorenz (1984) model. Since detailed derivations of the 414 

Lorenz (1984) model were missing (e.g., Veen 2002a, b), it is difficult to trace the physical source 415 

of the forcing terms (parameters “F” and “G” in Eqs. (1)-(3) of Lorenz 1984) in the model. 416 

Additionally, as compared to fully dissipative systems where the time change rate of volume of 417 

the solutions is negative, the volume of the solution within the 1984 model does not necessarily 418 

shrink to zero (e.g., p. 380 of Lorenz 1990). Therefore, results obtained using the Lorenz 1984 419 

model should be analyzed and interpreted with caution. Here, we illustrate some important features 420 

that are consistent with our findings (e.g., Shen 2019b) that support the revised view on the dual 421 

nature of weather. 422 

 423 



 20 

Major features within the Lorenz (1984) model are summarized as follows: (1) there are three 424 

types of solutions, including steady state, periodic solutions, and chaotic solutions, that depend on 425 

the values of system parameters; (2) (some) periodic solutions can be identified as limit cycle 426 

solutions (Wang et al., 2014); multistability with coexisting limit cycle solutions gave rise a 427 

question of whether or not intransitivity may occur (i.e., whether or not any of the state solutions 428 

may last forever); (3) when a seasonally varying forcing term F with a time scale of 12 months 429 

was applied, chaotic solutions appear during winter and two different limit cycle solutions appear 430 

during active and inactive summer, respectively (e.g., Fig. 6 of Lorenz 1990); (4) a spectral 431 

analysis displays peaks at time scales of 20 days associated with solutions during the summer (e.g., 432 

Figs. 1-3 of Pielke and Zeng 1994); (5) the transition from a chaotic solution in winter to a periodic 433 

solution in summer displays a final state sensitivity in association with the coexistence of two 434 

different limit cycle solutions. Such a transition may be likely unpredictable. The final state 435 

sensitivity suggests that the system is unlikely intransitive.   However, our results indicate that 436 

once summer begins and has been observed, a predictability of more than two weeks may be 437 

expected during each cycle of a periodic solution during the summer months.   438 

 439 

The above analysis supports our revised view on the dual nature of weather and the 440 

hypothetical mechanism for the recurrence (or periodicity) of successive African Easterly Waves 441 

(AEWs), based on the GLM, in Shen (2019b). The insensitivity of limit cycles to initial conditions 442 

implies that AEW simulations could be more predictable than we assumed (i.e., a predictability of 443 

more than two weeks).  444 

 445 

5. Concluding Remarks  446 



 21 

 447 

The chaotic nature of weather with finite predictability has been revealed for decades using the 448 

Lorenz model (Lorenz 1963), leading to a view that weather is chaotic.   By including additional 449 

small-scale processes within the generalized Lorenz model (e.g., Shen 2019a), we previously 450 

suggested the possibility of suppressing chaotic responses and, thus, incrementally improving 451 

predictability. In this study, we further discussed coexisting attractors in order to illustrate the dual 452 

nature of chaos and order in weather that leads to a different view on the intrinsic predictability of 453 

weather. As a result, we suggest that the entirety of weather is a superset that consists of both 454 

chaotic and non-chaotic processes. Specific weather systems may appear on a chaotic or non-455 

chaotic orbit for their finite lifetime, depending on the time scales of the energy source.   The 456 

refined view with a duality of chaos and order is fundamentally different from the Laplacian view 457 

of deterministic predictability and the Lorenz view of deterministic chaos. The appearance of 458 

periodic solutions (i.e., vacillation) and their transition to chaotic solutions associated with time 459 

varying parameters were indeed documented by Prof. Lorenz using different approaches (e.g., 460 

Lorenz 1969, 1984, 1990).  461 

 462 

The refined view is not too optimistic or too pessimistic as compared to traditional views. Both 463 

potential and challenges are suggested. The refined view for a dual nature of weather permits the 464 

possibility of both finite and unlimited predictability (e.g., up to the lifetime of a dissipative 465 

system). Although chaotic solutions with BE have finite, time-varying predictability, as a result of 466 

a sensitivity to initial conditions, they do not exclusively appear but occur within a subset of the 467 

total number of solutions. By comparison, for non-chaotic processes with steady-state or nonlinear 468 

periodic solutions, their intrinsic predictability is deterministic and their practical predictability 469 
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can be continuously increased by improving the accuracy of the model and the initial conditions. 470 

To this end, if we are able to identify non-chaotic solutions such as steady-state, periodic, or quasi-471 

periodic solutions in advance, we may obtain longer predictability or better estimates on 472 

predictability. Our future work will focus on developing schemes for the detection of chaotic and 473 

non-chaotic solutions (e.g., Sprott and Xiong, 2015; Reyes and Shen 2019) in order to improve 474 

our understanding of the roles of butterfly effects in the real world and on high-resolution global 475 

models; and, thus, our understanding of the conditions under which nonlinear interactions may 476 

lead to chaotic solutions and/or non-chaotic solutions such as limit cycle solutions.  477 
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Figure 1: Three types of solutions within the 3DLM. Left, middle, and right panels display steady-state, chaotic,
and limit cycle solutions at small, moderate, and large heating parameters (i.e., r = 20, 28, and 350), respectively.
The solutions are categorized into a point attractor, a chaotic attractor, and a periodic attractor, respectively.
Top panels show orbits within the X − Y space and bottom panels depict the time evolution of Y. Blue lines
provide solutions from control runs. To display results from parallel runs, red lines are added in the bottom
panels. Sensitive dependence on initial conditions is shown in panel (e) with two visible lines. Panels (b) and (e)
are reproduced from Shen (2019b).



Figure 2: Chaotic solutions in the X − Y −Z phase space within the 3D, 5D, 7D, and 9D Lorenz models (LMs).
Panels (a)-(c) use the same initial conditions with Y = 1 and the remaining as zero, while panel (d) uses the IC
with 100 for all variables. Variables (X, Y, Z) are normalized by 2

√

r − 1, 2
√

r − 1, and (r − 1) , respectively. A
larger heating parameter is required for the onset of chaos in a higher-dimensional LM. Reproduction from Shen
(2016) and Shen (2019).



Figure 3: Solutions of the GLM with M = 9 and r = 680. Initial conditions are placed near the non-trivial
critical point and the origin (i.e., trivial critical point) and at (100, 100, 100, 100, 100, 100, 100, 100, 100). Top
panels show the time evolution of Y for t ∈ [0, 2.5], while bottom panels display the corresponding solutions
t ∈ [0, 10] within the X − Y space. Control and parallel runs are denoted by ’C’ and ’P’, respectively. A finite-
amplitude perturbation (ǫ = −0.9) is added into the parallel runs. Panels (c) and (f) are reproduced from Shen
(2019a).
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Supplemental Materials: Was � = ��	a Magic Choice?  653 

 654 

For the past 50 years, although various types of solutions for Lorenz (1963) have been 655 

documented, chaotic solutions have been a main focus. As discussed in the main text, since chaotic 656 

solutions appear over a finite range of parameters, their applicability in revealing the nature of 657 

weather depends on the realism of not only the models employed but also model parameter values.  658 

In his book in 1993, Lorenz humbly expressed that it may not be possible for him to discover the 659 

butterfly-pattern solution if a realistic value of � = 1	was used, as shown below: 660 

`` 661 

I was lucky in more ways than one. An essential constant of the model is the Prandtl number -662 

- the ratio of the viscosity of the fluid to the thermal conductivity. Barry had chosen the value 10.0 663 

as having the order of magnitude of the Prandtl number of water. As a meteorologist, he might 664 

well have chosen to model convection in air instead of water, in which case he would probably 665 

have used the value 1.0. With this value the solutions of the three equations would have been 666 

periodic, and I probably would never have seen any reason for extracting them from the original 667 

seven. 668 

‘’ 669 

Therefore, one may wonder how fortunate Prof. Lorenz was and whether a realistic value of 670 

� = 1 may have influenced our view on the nature of weather. We make an attempt of addressing 671 

the question by analyzing a GLM with M = 9 and examining a 3DLM with	� = 1. As discussed 672 

in Shen (2019), the GLM with M = 9 has stable, non-trivial equilibrium points for all � > 1 when 673 

� = 10 and b = 8/3. To have stable, non-trivial equilibrium points for � = 1	within the 3DLM, we 674 

chose b = 2/5.	 Such a choice leads to two kinds of attractor coexistence, a unique feature first 675 
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identified within the 9DLM (Shen 2019). With � = 1 in the 3DLM, the first kind of coexistence 676 

includes chaotic and steady-state solutions at a moderate heating parameter (e.g., r = 170, as shown 677 

in Fig. S1). The second kind of coexistence consists of a limit cycle and a steady-state solution at 678 

a large heating parameter (e.g., r = 250, not shown). Table S1 lists initial conditions for the results 679 

provided in Fig. S1. Thus, chaotic solutions may still appear within the 3DLM for a realistic value 680 

of � = 1,	but they coexist with steady-state solutions. The appearance of chaotic solutions depends 681 

not only on the range of the heating parameter but also on the ICs.  682 

 683 

Both traditional and new model configurations with �, � = 10, 8/3  and 1, 2/5 , 684 

respectively, can produce chaotic solutions. For the traditional configuration that has been well 685 

applied in numerous studies since Lorenz (1963), all of the three equilibrium points are unstable 686 

when � > 24.74. The stability of three equilibrium points for � = 10, as well as for � = 1, is 687 

illustrated in Fig. S2. The non-existence of stable equilibrium points within the chaotic regime 688 

makes it easier to obtain chaotic solutions. However, no tiny, initial perturbation can completely 689 

lose its impact within the chaotic regime. We may interpret this as a finding that a tiny, initial 690 

perturbation cannot completely dissipate (before leading to a large impact). By comparison, for 691 

the new configuration, while the origin is still a saddle point, the two, non-trivial equilibrium points 692 

are stable (Fig. S2b). The existence of stable equilibrium points enables the coexistence of chaotic 693 

and steady-state solutions, the latter of which has no long-term memory regarding a tiny, initial 694 

perturbation.  695 

 696 

As a result of coexistence for � = 1 within the 3DLM, a proper choice of initial conditions is 697 

required in order to simulate a chaotic solution. Without knowing this, Prof. Lorenz thought that 698 
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it may be impossible to obtain a “strange’’ solution if � = 1 was first used in the Saltzman (1962) 699 

model, giving no motivation for him to work on the 3DLM. In other words, the value of � = 10 700 

used in the original study (e.g., Saltzman, 1962) was indeed a “fortunate” choice so that an 701 

unexpected irregularly oscillatory solution could be revealed, inspiring Prof. Lorenz to develop 702 

the 3DLM to discover the interesting chaotic features.  However, on the other hand, we now 703 

understand that such a configuration can only depict a partial picture for the nature of weather. 704 

Based on our results and analysis, a realistic system should include physical processes for (some 705 

of) the tiny disturbances in order to completely dissipate.  Since it produces the coexistence of 706 

chaotic and steady-state solutions and since the steady-state solution has no long-term memory of 707 

tiny perturbations, the 3DLM with the new configuration of � = 1 satisfies the objective.  Such a 708 

system, which is similar to the 9DLM that produces two kinds of coexisting attractors, provides a 709 

more realistic view on the true nature of weather than the original 3DLM with a typical 710 

configuration. The above analysis supports our refined view that weather is a superset that consists 711 

of chaotic (with BE) and non-chaotic (without BE) processes.  712 



Table S1: Initial conditions (ICs) for revealing the coexistence of two attractors for σ = 1,
b = 0.4, and r = 170 within the 3DLM. Xc = Yc =

√

b(r − 1) and Zc = (r − 1). The six
rows provide the ICs for Fig. S1.

X Y Z
Xc Yc + 1 Zc

-Xc −Yc + 1 Zc

0 1 0
-76.72346293 37.62433028 -146.96230812
-27.75526885 167.67883615 3.66782724
136.44623635 99.45689394 -19.76741851



Figure S1: A co-existence of chaotic (c, d) and non-chaotic (a, b, e, f) solutions using the same parameters for
σ = 1, b = 0.4, and r = 170 within the 3DLM. Blue and red lines display solutions from the control and parallel
runs, respectively. Initial conditions for the results in six panels are listed in Table S1.



Figure S2: Local behavior near the two non-trivial critical points for the 3DLM with σ = 10 (a) and σ = 1 (b).
Lighter blue dots indicate the locations of orbits at earlier times. A red dot indicates the origin, which is a saddle
point. Orbits in panel (a) spiral away from the non-trivial critical points while orbits in panel (b) spiral toward
the non-trivial critical points.


