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1.    INTRODUCTION 
 
Third-generation wind wave models such as SWAN 
(Booij et al. 1999) and WAVEWATCH III (Tolman et al. 
2016) produce directional spectrum output with a very 
large number of degrees of freedom (100M to 1B per time 
step on a typical model grid). To reduce this large amount 
of information, while retaining details of complex wave 
fields, wave spectrum partitioning algorithms have been 
developed to identify significant wave components such 
as swells and wind sea (e.g. Vincent and Soille 1991, see 
Fig 1). This partitioned model output is increasingly being 
applied to provide targeted forecasting for specific marine 
activities, such as favorable wave conditions for 
recreation, steep wind seas that are hazardous to small 
craft, long-frequency swell which adversely affect large 
commercial ships entering ports, and so forth. 
 
Although useful for grouping the wave component data, 
these partitioning algorithms operate locally in 
geographical space, independently at each grid point in 
the model. As such, the coherence of the derived swell 
and wind sea partitions in geographical space and time is 
not guaranteed. Hanson and Phillips (2001) developed a 
nearest-neighbor approach (in wave height-period-
direction space) to associate partitions between time 
steps, thereby establishing the temporal coherence at a 
given geographical location. Devaliere et al. (2009) 
extended this approach to establish the spatiotemporal 
connection between partitions, resulting in coherent wave 
systems. Their “spiral tracking” method is an 
agglomerative algorithm, in which individual wave 
partitions are associated in nearest-neighbor fashion with 
a set of wave systems, growing in a spiral pattern from 
the center of the model domain towards the outer 
boundaries. A weakness of this approach is that it is 
essentially a serial operation, so that if one nearest-
neighbor connection between similar partitions in space 
or time is missed, a wave system can be erroneously 
broken off, or mis-associated with another wave system. 
The result is a flip-flopping pattern between wave 
systems in time and space, as shown in Fig 2. 
 
In the present study, we aim to remedy this problem by 
proposing an unsupervised machine learning approach 
for combining the wave partitions. This task is cast as a 
clustering problem, which is solved using the well-known 
k-means algorithm (Lloyd, 1982). As will be shown, the 
key difference with the previous approaches is that all 
wave partitions are considered simultaneously in space 
and time, and grouped on the basis of their common  

mean characterics. As such, the risk of a missed spatial 
or temporal connection between individual partitions, as 
in the previous approaches, is significantly reduced. This 
paper discusses the development of this cluster-based 
approach to wave system identification, and its proposed 
implementation in an operational system for nearshore 
wind wave forecasting. 
 

 
 

Figure 1: Separation of a directional wave spectrum 
into three distinct wave partitions (colors). 
 

 
 
Figure 2: Erroneous “flip-flopping” of partition 
assignments to wave systems in simulations at 
NDBC station 46219. Shown are time series of wave 
systems (colors) in terms of their wave period (vector 
origin), direction (vector orientation) and height 
(length). Mis-assignments indicated by circles. 
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Figure 3: K-means clustering of four clusters over a 
two-dimensional feature space. Plusses indicate the 
cluster centers. 
 
2.   METHOD 
 
Clustering is an unsupervised machine learning method 
widely used in science (e.g. Eisen et al. 1998) and 
business (e.g. Chapman and Feit 2019). One of the most 
efficient and popular clustering algorithms is k-means 
(Lloyd, 1982), which attempts to segment data points in 
compact groups around a fixed number of cluster centers, 
representing the means across a number of feature 
dimensions (Fig 3). The basic algorithm has the following 
steps: (i) initialization of cluster centers at random within 
the n-dimensional feature space, (ii) assignment of each 
data point to the nearest cluster center, (iii) recomputing 
the position of the cluster centers based on the mean of 
the data points assigned to each, (iv) repeat steps (ii)-(iii) 
until cluster center positions cease to change. In this 
study, we used the KMeans implementation in Python’s 
machine learning library scikit-learn. The feature space 
within which the data is clustered differs by application. 
For the present application, features that distinguish 
different wave systems are unique combinations of wave 
period, wave direction, wave height and possibly 
directional spread, steepness and wave age. Therefore, 
once the directional wave spectrum has been divided into 
a set of wave partitions, at each geographical location, 
these features of each partition can be used as input to 
the clustering algorithm to identify the wave systems. 
 
An important characteristic of the k-means algorithm is 
that it does not compute the number of clusters (unlike 
with e.g. hierarchical clustering) – rather, this has to be 
specified. Furthermore, in forecasting applications, the 
number of wave systems is not known a priori, and can 
vary between different forecasting cycles. The number of 
clusters therefore becomes a hyperparameter to be 
tuned. Following Scikit-learn (2019), the k-means 
analysis is thus repeated with a range of k values, and 
the one yielding the highest silhouette coefficient metric 
(Rousseeuw, 1987) is selected. The silhouette coefficient 
measures the normalized average difference between 

the distances from each data point to all the data points 
in its nearest neighboring cluster and those in its assigned 
cluster, on a scale of [-1, 1]. A score of 1 signifies a perfect 
outcome, with clear separation between clusters. This 
calculation was done using the silhouette_score 
function in Python’s scikit-learn library. 
 
3.    DATA 
 
The data is sourced from NOAA’s Nearshore Wave 
Prediction System (Van der Westhuysen et al. 2013). 
This SWAN-based forecast system is run on 
computational grids tiled along the United States 
coastline, having nearshore resolutions of 1.8 km-500 m. 
It is driven on-demand by wind grids developed by 
National Weather Service forecasters, and wave 
boundary conditions from NOAA’s operational 
WAVEWATCH III model. Wave-current interaction is 
included using surface currents from the Real-Time 
Ocean Forecast System (RTOFS-Global). Tides and 
storm surge are accounted for using the Extratropical 
Surge and Tide Operational Forecast System (ESTOFS). 
 
This model produces output in terms of integral wave 
parameters, directional wave spectra, and wave 
partitions. The integral wave parameters from this model 
can be very complex in regions where many wave 
systems exist, as seen for the Hawaiian Islands domain 
shown in Fig 4. The conditions include a NW swell, E 
trade wind seas, and a S swell from a distant storm, and 
can be difficult to interpret when viewed in terms of an 
integral wave parameter field such as shown here. 
 
The input features to the clustering algorithm are the 
individual wave partitions computed using the Vincent 
and Soille (1991) algorithm (e.g. Fig 1). This partitioning 
output includes the component wave period, wave 
direction, and significant wave height of each computed 
partition. The data records thus comprise the feature 
values of each wave partition at each geographical 
location, at each time step in the wave model simulation. 
 

 
 
Figure 4: Significant wave height (ft, colors) and 
mean wave direction (vectors) forecast field over 
WFO Honolulu on 2019/05/29 at 00Z by the SWAN-
based Nearshore Wave Prediction System. 
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Figure 5: Data frame used in the clustering operation. 
HS_PT, TP_PT and DIR_PT denote the partition wave 
height, peak period and direction, respectively. 
 
The compilation of this wave partition data into a data 
frame is shown in Fig 5. The features of each partition 
appear as columns (e.g. latitude, longitude, partition 
wave height, period, direction), and the values for each 
partition appears by row. Note that for a given time level 
and geographic location, there is typically more than one 
partition row – this reflects the complex sea state of 
numerous wave systems. The typical data size is about 
6M rows of partitions. The objective of the clustering 
operation is to assign a wave system label to each 
partition (last column), so that they can be assembled into 
spatially and temporally coherent wave system fields. 
 
4.    RESULTS 
 
Fig 6 shows the result of the k-means clustering 
calculation for the wave partitions generated during a 6-
day forecast simulation over the WFO Honolulu domain. 
The clustering is shown in wave parameter space (height-
period-direction), such that each partition at each 
geographical location and time level appears as a point 
in this parameter space. Each cluster (wave system) 
assignment is identified with a different color. We can see 
that there are clear coherent clusters identified in this 
parameter space, each of which represents a unique 
wave system, in this case totaling four (hyperparameter 
set at k = 4). We can thus distinguish systems with 
combinations of low period and low wave height from the 
east, higher period and wave height from the northwest, 
and so forth. Note that time is not plotted as a separate 
dimension, so that these clusters represent all time levels 
of the wave systems during the 6-day forecast. 
 
Although helpful in understanding the clustering results, 
the representation in wave parameter space is difficult to 
interpret for practical application. We therefore map these 
results back to a geographical-temporal representation 
using the timestamp, longitude and latitude features of 
each labelled wave partition. Fig 7 shows this mapping, 
from which we can see the four distinct wave systems 
within the Hawaiian Islands model domain: (i) a 
northwesterly swell system (first pair of panels); (ii) 

easterly trade wind seas (second pair of panels); (iii) a 
southerly swell (third pair of panels), and (iv) a 
southwesterly swell (fourth pair of panels). We can verify 
that the produced wave fields are indeed coherent in 
geographical space, displaying the expected wave 
dynamics such as shadowing behind the islands, 
depending on the wave direction and directional spread. 
Also included in Fig 7 is a radial plot of the simulated 
directional wave spectrum at the location of NDBC 51003. 
We can verify that the directional wave spectrum (the 
primary quantity produced by the spectral wave model) 
indeed shows the presence of the four wave systems 
identified by the clustering algorithm. 

 
 
Figure 6: Wave system clustering in three-
dimensional wave feature space, for WFO Honolulu. 
Colors indicate the identified wave systems, for k = 4. 
 

 
 
Figure 7: Wave system clustering in geographical 
space, for WFO Honolulu. Each pair of panels show a 
distinct wave system, with upper panels showing 
wave height and direction, and lower panels showing 
peak period and direction. The plus symbol in the SW 
corner of the domain indicates the location of the 
included directional wave spectrum. 
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4.1    Optimal number of wave systems 
 
As described in Section 2, the k-means clustering 
algorithm does not yield an estimate of the number of 
clusters (wave systems). Rather, it is a hyperparameter 
that must be provided as input to the algorithm. In 
collaboration with our NOAA weather forecasters, we 
determined that five is the maximum number of wave 
systems that can effectively be communicated in 
forecasts. The clustering algorithm therefore iterates 
through a number of trial operations with k = 2 to 5, 
determines the silhouette coefficient for each, and then 
selects the k that yields the highest value of this 
performance metric. Figure 8 shows the results for this 
hyperparameter search for the 2019/05/29 00Z Hawaiian 
Islands example. For these conditions, the optimal 
number of clusters (wave groups) was three, and it 
achieved a quite a high silhouette coefficient of 0.73. 
 
Fig 9 shows the geographical mapping of the clustering 
result with the optimal value of the hyperparameter k = 3. 
From the included directional wave spectrum, we can 
manually verify that for the conditions of this forecast, a 
total of three clusters (easterly wind seas, northwesterly 
swell, southwesterly swell) is indeed appropriate. By 
contrast, if we check the results of the trial runs with k = 5 
(Fig 10), we see significantly poorer results. We can see 
that the third wave system identified here agrees with the 
third wave system identified above (Fig 9), but that the 
remaining four wave systems differ. Instead of the 
coherent and physically realistic wave systems of Fig 9, 
the k = 5 solution shows incoherent, unphysical wave 
systems, in particular for systems 1 and 2 (Fig 10, top left 
and top center). This is an example of a poor clustering 
result, where wave groups are erroneously pulled apart, 
because the specified k is greater than the actual number 
of wave systems that occurred during these conditions. 
As a result, this trial’s silhouette score is lower at 0.59, 
and is hence not selected as the final clustering result. 

 
 
Figure 8: Comparison of silhouette scores for values 
of the hyperparameter k (number of clusters) ranging 
from 2 to 5. 

 
 
Figure 9: Clustering results over the Hawaiian Islands 
domain for k = 3. Silhouette coefficient = 0.73. 
 

 
 
Figure 10: Clustering results over the Hawaiian 
Islands domain for k = 5. Silhouette coefficient = 0.59. 
 
4.2    Temporal consistency 
 
As discussed in Section 1, a concern with existing 
methods for producing wave systems such as Hanson 
and Phillips (2001) and Devaliere et al. (2009) is the serial 
nature of their algorithms. The proposed cluster-based 
approach solves this problem by segmenting all time 
levels of the wave partitions simultaneously, making it 
much less vulnerable to missed temporal connections 
from one time step to the next. 
 
We can verify this improvement by studying the time 
series of the above clustering results. Fig 11 and 12 show 
time examples of the clustered wave model results at the 
locations of NBDC 51003 and NDBC 51201 in the 
Hawaiian Islands model domain for the May 29, 2019 00Z 
forecast cycle. From Fig 9 above we know that there were 
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Figure 11: Time series of wave systems (colors) at 
NDBC 51003 (SW of Hawaiian Islands) for the 
simulation of 2019/05/29 00Z. Shown are wave period 
(vector origin), direction (vector orientation) and 
height (vector length), and the associated wind 
conditions (bottom panel). 
 

 
 
Figure 12: Time series of wave systems (colors) at 
NDBC 51201 (Oahu North Shore) for the simulation of 
2019/05/29 00Z. Shown are wave period (vector 
origin), direction (vector orientation) and height 
(vector length), and the associated wind conditions 
(bottom panel). 
 
three dominant wave systems present during this 
forecast cycle, namely a northwesterly swell, a long-
period southerly swell, and an easterly wind sea. Fig 11 
shows the time series of these systems at NDBC 51003, 
located to the southwest of the Hawaiian Islands. At this 
open water location, we can clearly see the time series of 
the three wave systems in different colors. The southerly 
swell (system 1) has the highest peak period, followed by 
the lower period of the northwesterly swell (system 3). As 
expected, the easterly wind sea (system 2) has the lowest 
peak period. Notice that the color labeling of the time 
series of all three systems is uniform, without the flip-
flopping seen in the example of Fig 2. This indicates that 
the time series of the wave systems are indeed 
temporally consistent. One interesting feature in this 

result is the alternating peak direction in the easterly wind 
sea (system 2). Inspection of the lower panel, shows that 
the peak direction of this wind sea generally agrees with 
the prevailing easterly winds, as expected. However, due 
to the easterly wind sea condition, there is sheltering on 
the western side the Big Island of Hawaii (Fig 9, center 
panels). Since station 51003 is located downwind of this 
disturbance, it experiences cross-sea conditions within 
this single wind sea system – waves from one part of this 
system approach from the north of the Big Island, and 
those from the other part from the south. The result is 
alternating peak wave directions from this single wave 
system. 
 
Further interesting phenomena are seen in Fig 12, 
showing nearshore results at NDBC 51201 at the North 
Shore of Oahu. We still see the three wave systems 
discussed above, but at different magnitudes due to the 
nearshore location. First, since the location is at the 
northern face of the island, it is almost completely 
sheltered from the southerly swell (system 1), which 
shows up only with a very small wave height. Similarly, 
the easterly wind sea (system 2) refracts around the 
island of Oahu, so that it arrives from the northeast at this 
location (and not as crossing seas, as seen at 51003). 
Finally, as expected, the northwesterly swell for which this 
location is famous arrives unobstructed and is seen 
clearly with the largest wave height as system 3. Notice 
again that all three these wave systems have been 
identified coherently in time, without any flip flopping 
between their assignments. 
 
5.    DISCUSSION 
 
In this study, we investigated the application of clustering 
to the segmentation of wave partitions computed from 
simulated directional wave spectra into coherent wave 
systems in space and time. The presented methodology 
has shown promising results to practical field applications 
such as the nearshore wave forecasts of the NOAA 
Weather Forecast Offices, for example those of the 
Honolulu office shown here. 
 
There are, however, a few remaining challenges in 
applying clustering for wave system segmentation. First, 
the number of partitions that each directional wave 
spectrum is decomposed into does not necessarily match 
the number of clusters k for a given trial. If the number of 
partitions at a particular location and time step is fewer 
than k, some wave systems are not associated with a 
partition. This can occur if a wave system is smaller than 
the full model domain, or is transient and does not last the 
full analyzed duration. However, the number of partitions 
can also be greater than k, in which case more than one 
partition can be assigned the same cluster (wave system) 
label. In this case, the variance of all the assigned 
partitions is summed to obtain a combined significant 
wave height for that wave system. The peak period is 
computed as a weighted average over the assigned 
partitions on the basis of their variance densities. The 
peak direction of the combined wave system is the 
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direction with the greatest variance. This process of 
averaging over partitions can result in a degree of 
blending between wave systems, which is not always 
desirable. However, except if the computed spectrum is 
very noisy, the optimum number of clusters k would 
generally be equal to, or greater than the number of 
identified wave partitions, so that this averaging problem 
would not occur. 
 
A second challenge of the proposed approach is 
describing conditions that are highly nonstationary. The 
conditions presented here are approximately stationary in 
that their wave height-period-direction characteristics do 
not change significantly during the course of the 6-day 
forecast. When conditions within a cluster (wave system) 
change rapidly, such as for example in a hurricane vortex, 
it is more difficult to identify a unique feature combination 
with which to associate that cluster. A solution would be 
to not analyze the entire forecast period simultaneously, 
but rather to apply a moving window within which the 
clustering is computed. 
 
A final challenge is in the identification of very young wind 
seas. Small craft in coastal waters are vulnerable to steep 
wind seas which can develop within an hour of the start 
of a local storm. These wind seas manifest themselves 
as a high-frequency peak in the directional wave 
spectrum. Hence, they would be identified as a new 
partition, and subsequently assigned to a wave system 
cluster. However, in modeled directional wave spectra, 
we typically do not immediately see the presence of 
young wind seas if there is ambient swell present from a 
similar direction. This is because the source term for 
quadruplet nonlinear interaction used in models such as 
SWAN tends to smooth disturbances in the high-
frequency tail. It therefore takes a few hours for the young 
wind sea to develop its own spectral peak in the model, 
and hence its own partition and wave system. Thus, the 
clustering approach has difficulty in identifying very young 
wind sea within an hour or two of its origination, even 
though it is not the root cause of this deficiency. Solutions 
for this deficiency should therefore be sought in an 
improved spectral representation in the underlying third-
generation spectral wave models. 
 
6.    CONCLUSIONS 
 
This study investigated the application of k-means 
clustering to identify wave systems in numerical wave 
model forecast runs. Examples of the resulting wave 
system fields in space and time were shown, as well as 
the methodology for the selection of the appropriate 
number of wave systems. From the results of this study, 
the following can be concluded: 
 
i. K-means clustering is found to be successful in the 

segmentation of wave partitions into wave systems 
that are coherent in both space and time. The 
complex examples over the Honolulu Weather 
Forecast Office model domain considered here show 
analyzed wave systems with consistent spatial fields, 

and time series free of the flip-flopping of system 
assignments found with the Devaliere et al. (2009) 
spiral tracking algorithm. 

ii. The silhouette coefficient was found to be an 
effective quality metric for determining the 
hyperparameter setting k, the number of clusters 
(wave systems) present in the wave condition, which 
is unknown a priori for a given forecast cycle. Optimal 
values are sought within the range k = 2 to 5, and 
these agree well with manual inspection of the 
modeled directional wave spectrum. 

iii. Remaining challenges of this cluster-based 
approach are: (a) Reconciling mismatches between 
the number of wave partitions identified by 
partitioning algorithms such as Vincent and Soille 
(1991) and the optimal wave systems k determined 
using the silhouette coefficient, (b) Computing wave 
systems for highly nonstationary conditions where 
wave system characteristics vary rapidly, and (c) 
Identification of very young wind seas, due to 
limitations in the underlying modeled directional 
wave spectra. 
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