Handout (1.2 MB)
community for several decades. However, the reasons why some supercells produce tornadoes, while others
in similar environments and with similar characteristics do not, remains poorly understood. For this study,
tornadogenesis failure is defined as a supercell appearing capable of tornado production, both visually and
by meeting a vertically contiguous differential velocity (ΔV) threshold, without producing a sustained tornado.
Data from a supercell that appeared capable of tornadogenesis (but which failed to produce a sustained
tornado) was collected by the Atmospheric Imaging Radar (the AIR, a high temporal resolution radar) near
Denver, CO on 21 May 2014. These data were examined to explore the mechanisms of tornadogenesis failure
within supercell thunderstorms. Analysis was performed on the rear-flank downdraft (RFD) region and
mesocyclone, as previous work highlights the importance of these supercell features in tornadogenesis. Preliminary
results have found a lack of vertical continuity in rotation between the lowest level of data analyzed
(100 m AGL), and heights aloft (> 500 m AGL). A relative maximum in DV occurred approximately 100 m
AGL (0.5° in elevation on the radar) around the time of suspected tornadogenesis failure; this contrasts with
weaker ΔV at elevations aloft. Additionally, the RFD produced by the Denver Supercell had a peak in intensity
aloft (between 2.5 and 3 km in height) just prior to the time of tornadogenesis failure, while simultaneously
experiencing a relative minimum in intensity in the layer between the ground and 1 km.
Supplementary URL: https://sites.google.com/view/kylepittman/research-projects