Amateurs today obtain space weather and propagation prediction information from sources such as the NOAA Space Weather Prediction Center (SWPC), spaceweather.com, the Voice of America Coverage Analysis Program (VOACAP), amateur radio propagation columnists (ARRL, RSGB, and CQ Magazine), and spaceweatherwoman.com (Dr. Tamitha Skov). In order to predict success for their communications efforts, hams often use parameters such as smoothed sunspot number, 10.7 cm wavelength solar flux proxy, and the planetary Kp and Ap indices as inputs to predict radio propagation performance. Traditionally, these predictions focus on the driving influence of space conditions and the sun’s output. However, frontier research in the space sciences community has revealed that for improved predictive success, much more information needs to be provided on neutral atmosphere dynamics from the lower atmosphere and its coupled effects on the ionosphere, and predictions need to be available at higher temporal and spatial resolution. Lower atmospheric influences include atmospheric gravity waves that can couple to traveling ionospheric disturbances that can dramatically alter radio propagation paths. Tropospheric phenomena such as temperature inversions and wind shear also affect VHF and UHF propagation. To be most useful, the ham community needs operational products that provide real time nowcasts and multi-day forecasts which predict how space weather through the whole atmosphere affects radio wave propagation on global scale and at all operational wavelengths.
To help with this effort, hams can provide data with unique spatial and temporal coverage back to the research and forecast community. The amateur radio community has already started this process with the creation of multiple global-scale, real-time propagation reporting systems such as the Weak Signal Propagation Reporting Network (WSPRNet), PSKReporter, and the Reverse Beacon Network (RBN). Studies by the Ham radio Science Citizen Investigation (HamSCI) have shown that data from these systems, if applied correctly, can effectively be used to study ionospheric space weather events. Experienced amateurs keep detailed records of verified point-to-point contacts and have extensive experience operating under a wide variety of geophysical conditions and locations, both of which can provide unique insights when shared with the professional research community. In this presentation, we will describe efforts led by the HamSCI collective to provide this research community feedback through active HamSCI community email lists and annual HamSCI workshops. We will also describe strategies with good initial success at amateur-professional collaboration, including a HamSCI-led amateur radio community - professional research community partnership to create a network of HamSCI Personal Space Weather Stations (PSWS), which will allow citizen scientists to make science-grade space weather observations from their own backyards.