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The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign took place in France in June and July 2011 focusing on the evening collapse of the boundary layer. In an effort to guide the BLLAST experimental
design, the present numerical study aimed at answering basic questions such as : what is the start-time of the late afternoon transition (LAT) ? Which atmospheric layers have to be experimentally investigated in priority ? To
address these questions, two Large Eddy Simulations (LES) codes were used to simulate the decaying atmospheric boundary layer (ABL).

Validity of the normalization scales during the LAT

Figure 2 Temporal evolution of :

ObjeCtIVES (a)the length scale zi, which can @ X b) ﬁe evolution of zi is very simila%\

'S’shape of buoyancy flux

1/ Comparing two LES and their ability to simulate the late afternoon transition (LAT) be defined as the a/titudef of| "l P tz)|o|t2 r:rc])(t)(\j/\?:f di‘;;’:g:j’eg;/ i":grr;;?rgt:r; — 1415
i Tl : : : - the minimum buoyancy flux e s 8 1 |— 1085

2/ S_tgdylng the turbulence characteristics during the LAT : results found in the literature are (zi minflot) or as the summit of 2000_;:;% e B ooy Do (ueeiens of A6 | -

revisited and further analyzed. the mixed layer (zi_hom),| ¢ - s || are observed, Fig. 2a). However, zi is | | |  Flgure3 =

This comparison investigates: where theta gradient exceeds | N Py | well defined by the height of the EI | Vertical profiles

. : : a threshold. | W ) / \ ) prc

* the validity of mixed layer scaling | | T o || mixed layer. 2l | andtheir linear

* the ‘S' shape of the buoyancy flux (b) the convective velocity scale | g 4 . || = From 1600LT, the convection _ | regressions

oy . =(BwW8 zi)?,p=5 - | between 0 and

- the decay of turbulent kinetic energy (TKE) W SBWTeE) S8 S = P | CCCEEEES Ehel  neliess ol S LA 0.62i at

I " h T ' the mean e o 111':19h PR exponentlally increase of t. At 0 > Ng}?nalizedoiﬁux ' '

* the time evolution of turbulent length scales. where I T (7 " . 1415LT,
temperature in the ABL, the 1600LT, 15 minutes are necessary for Linoar profios | S shane 1715LT and
convective-time scale. , ZI a thermal to go through the ABL p P > i mﬁ/esp | 1955LT

: : clilef it EULEIRS SIS Ukl whereas at 1900LT, double time is ° Figure 4

Large eddy simulations fux /100, for NCAR () and auired j ; |- Tomporal

eSo- Simuiations. " ! / .
* Two LES models : NCAR and Meso-NH (LA/CN RM/GAME) > Are these srales st relevant after i f\ ’,:’ 1 evolution of

the area
between '€~
w @ *
and the
21 linear

regression

* Same equations for both models (Navier-Stokes)

* No cloud developing

* No large scale forcing (i.e. advection, subsidence) and no geostrophic wind

* No coupling with a surface model : sensible and latent heat fluxes are imposed at surface

Study case IHOP

 Data-set collected on 14 June 2002 during the International H,O Project field experiment

(Southern Great Plains, US)

- Initialization with wind, temperature and humidity profiles at 7am, as well as sensible and
latent heat fluxes

* Size of the simulated domain : 10 km * 10 km * 4.8 km

* Regular grid of 100 m (horizontal) and 40 m (vertical)

* Time increments : Meso-NH : dt=1s, NCAR:dt ~2.5s

Decay of TKE
Decay of the mean TKE in the ABL

Niewstadt and Brost (1986) studied the TKE decay due to a sharp cut of the surface heat flux H. Sorbjan (1997)
extended this study by investigating a gradual decrease of H, with a time lag between the maxirim and the zero flux
of 1.4 h. Here, we investigate dfdecrease of H, with = 6h.
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shaped. Indeed, after 1700LT, the turbulent transfers

are significantly different than during the convective
period. The convective time scale seems not short
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The decay of the volume averaged total TKE, scaled by w.,* (Fig. 5) is a function of two time scales (Sorbjan 1997) :

* the external time scale controlling the surface heat flux evoldiion Characteristics Sorbjan | THOP

« the convective time scale t. w0 (ms™) 0.613 | 2.0701
0,0 (K) 0.0163 | 0.0966

Zi0 (M) 705 1300
In our simulation, we obtain a similar function, with a decrease of t+ : to (s) 1150 683

the normalized TKE remains constant for a longer time, then it decreases much W6 may (Kms™!) 0.01 0.2
Tr (h) 1.4 6.41

Decay rate = % (Kmir2) | 25.71 | 112.32

Conclusion

Figure 5

The volume
averaged total TKE,
scaled by w., as a

function of
tt.,. . w.,,and t., are the

convective scales when
the
surface heat flux is
maximum.
(a) : according
to Sorbjan, (b) : with
NCAR and Meso-NH

The results of two simulations (NCAR and Meso-NH)
have been investigated, for a convective boundary
layer, without cloud, during the LAT. On the whole,
both simulations give very similar results for mean
parameters and fluxes.

omparison of the two simulations NCAR and Meéso-N
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- Determining the development of the ABL in the LAT is
challenging. Some ways to evaluate the ABL height do
not work in the LAT : in our case, the most fitting
method consists in determining the summit of the ML.
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