School of Earth and Environment

INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

The vertical turbulent structure of the Arctic summer boundary layer during ASCOS

Guylaine Canut¹ Ian Brooks¹

Cathryn Birch¹, Michael Tjernström², Matt Shupe³, Ola Persson³ Thorsten Mauritsen⁴, Joe Sedlar⁵

¹ University of Leeds, UK
 ² Stockholm University, Sweden
 ³ University of Colorado, Boulder / NOAA ESRL/CIRES, USA
 ⁴ Max Planck Institute for Meteorology
 ⁵ Swedish Meteorological and Hydrological Institute

Context: ASCOS (Arctic Summer Cloud-Ocean Study)

- In climate models,
 clouds and aerosols
 remain the single
 largest source of
 uncertainty
- In the Arctic, clouds are the single-most important factor in controlling the surface energy balance, and thereby the melt and freeze of ice
- The interplay between processes controlling clouds in the Arctic are poorly understood
- ASCOS studies these processes in detail

Context: ASCOS (Arctic Summer Cloud-Ocean Study)

Arctic Boundary Layer:

- Role in the interaction between surface (ice/snow) and low-level cloud
- Study the vertical structure with mean and turbulent properties

ASCOS experiment
 Observations used in this study
 The Boundary layer structure
 Estimation and study of the turbulent
 processes
 Conclusion

1. ASCOS Experiment

- Period: August 12 Sept 1 2008
- Location: 87-87.6°N, 1-11°W
- Observations for a continuous description of the mean thermodynamical PBL structure

ASCOS ice camp

5700 meter

Micrometeorology & Oceanography

3200

meter

6e

2. Observations used in this study

• From the surface

2. Observations used in this study

All the data deduced from **these instruments** (from ground and from the Oden) **have been combined** to study the boundary layer structure

3. Boundary-layer structure

• The Richardson number: to study the stability of the different layer

School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC

Θ: obtained with the 60 GHz scanning microwave radiometer

3. Boundary-layer structure

• The Richardson number: to study the stability of the different layer

Estimation of the top of boundary layer interface between unstable and stable layer

UNIVERSITY OF LEEDS

Radar reflectivity showing cloud cover

3. Boundary-layer structure

• The Richardson number: to study the stability of the different layer

INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

4. Estimation of the turbulent processes

The turbulent dissipation rate (ε):

 \checkmark is a term of the tke Budget \checkmark to quantify the turbulence

4. Estimation of the turbulent processes

The turbulent dissipation rate (ε):

 \checkmark is a term of the tke Budget \checkmark to quantify the turbulence

School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

UNIVERSITY OF LEEDS

School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

UNIVERSITY OF LEEDS

Conclusion

- Innovative combination of multiple remote sensing measurements & retrievals to provide continuous profiles of turbulent mixing indicator (Richardson number)
- Consistent picture from remote sensing (doppler cloud radar) & in-situ measurements (tetherballon)
- Arctic summer (ASCOS) BL often decoupled at ~100m
- Coupling probably dependent on cloud-driven turbulence
 Height of cloud top (BL depth), depth of cloud, depends on synoptic conditions

Mercil

4. Estimation of the turbulent processes

• The turbulent dissipation rate (\mathcal{E}) : - to quantify the turbulence

Good correlation allow us to have confidence on \mathcal{E} obtained by the MMCR. This instrument permit continue observations of \mathcal{E} in all the boundary layer.

School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE

UNIVERSITY OF LEEDS