Land-surface response to shallow cumulus

Fabienne Lohou and Edward Patton

Outline

1/ SEB response on average and locally

(Radiative and turbulent effects (not shown here))

2/ Boundary layer response to cloud-induced surface flux heterogeneity

3/ Entrainment associated to BL-clouds

Case: 21 June 1997 ARM SGP: Golaz et al. 2001, Brown et al. 2002, Vilà-Guereau et al., 2005

Domain: 10 km² x 4 km

Resolution: $\Delta x = \Delta y = 20$ m and $\Delta z = 8$ m 4 levels in the ground: 5, 20, 60, 100 cm

Soil type: bare / clay-loam (wilting point = 0.103 m3/m3 // field capacity = 0.465 m3/m3) soil moisture content: 0.44 m3/m3// soil moisture availability: 0.93

Surface sensible heat flux

Surface Sensible Heat Flux (W m⁻²)

un-shaded area

shaded area

Cloud layer characteristics

✓ Forced Cumuli: cloud top < level of free convection

(Stull, 1988; Otles and Young, 1996)

- ✓ Depth up to 1.4 km
- Diameter up to 1 km
- ✓ Cloud Fraction up to 30%

What is the SEB response to BL-Clouds on average and locally?

SEB response to BL-clouds on average

SEB response on average

SEB response on average

Penman equation

$$H = \frac{\rho_a c_p}{r_a} (\theta_s - \theta)$$

SEB response locally

SEB response on average

 ✓ Non linear response of the SEB to BL-clouds no matter the soil type and soil moisture.
(offline tests with 1D NOAH LSM (not shown))

✓ EF increases of 3%

SEB response locally

Boundary layer response to cloudinduced surface flux heterogeneity

Cloud roots characteristics: mean parameters

Example at 1300 LST

Cloud root ≡ column above shaded area

-0.4

-0.6 -0.8

Cloud roots characteristics: vertical fluxes

Vertical flux profiles in the shaded and un-Sensible heat fluxshaded areas

Vertical flux profiles in the shaded and un-Sensible heat fluxshaded areas

Small and moving surface heterogeneities due to cloud shading and secondary circulation are able to affect the atmospheric flux above the surface layer

Entrainment associated to cloud BL-clouds

Sensible contribution A_e

Latent contribution A_a

Sensible contribution A_e

Latent contribution A_a

Entrainment rate A is not changed on average.

But at short time scale, cloud activity tends to slightly increase A.

Thank you for your attention

Additional slides

Land-surface / Atmosphere coupling

flux at the surface

Need of the skin temperature

Pronostic equation for skin temperature

$$C_{skin}\frac{dT_s}{dt} = Q + G - H - LE$$

Cskin : skin layer heat capacity ... hard to define Penman-Monteith equation

Q+G=H+LE

No skin heat capacity Immediate response of the skin layer

NCAR LES code

Moeng, 1984, 1986 / Sullivan et al., 1996 / Patton et al., 2005

Set of Navier-Stokes equation (u,v,w)

- Subgrid-scale terms are parameterized with the subgrid TKE and a stability-dependent length scale.
- Condensation scheme is based on all-or-nothing assumption / Non-precipitating clouds.
- ✓ 1D radiation

Cloud transmission coefficient (Joseph et al., 1976) $5-e^{-t}$

$$t_c = \frac{1}{(4+3\tau(1-f))}$$

Optical depth (Stephens, 1984)

$$\tau = \frac{3 lwp}{2 r_e}$$
 with $r_e = 10 \mu m$

Atmos. Forcings Ch, Cm, θ, q, u, SWdn

NOAH Land surface model

1D set of equations for thermodynamic and hydrologic variables: *Mahrt and Pan, 1984, 1987 // Surface energy balance: Chang et al, 1999*

NOAH Land surface model

1D set of equations for thermodynamic and hydrologic variables: *Mahrt and Pan,* 1984, 1987 // Surface energy balance: Chang et al, 1999

Local SEB response to sudden net radiation changes

	un_shaded area	shaded area
1	0.3 Q	0.3 Q
. E	0.5 Q	1.2 Q
3	0.2 Q	-0.5 Q

Radiative and turbulence effects on surface flux

In NOAH LSM (Penman, 1948; Monteith, 1981):

$$\lambda_{v} E = \frac{\frac{dq_{sat}}{dT_{a}} Q}{\frac{dq_{sat}}{dT_{a}} + \gamma}} \qquad r_{a} = \frac{1}{uC_{h}} \qquad r_{a} = \frac{1}{uC_{h}} \qquad C_{h} = f(z_{0}, L, \psi)$$

Mean variation of potential evaporation strongly driven by radiative effect.

Cloud-induced turbulence and secondary circulation tend to increase the surface flux variability.

Does this variability participate to convection triggering.

Radiative effect via the

correlation coefficient

SWdn-LE ~ 0.9

SWdn-H ~ 0.98

Turbulent effect via the temporal evolution of H and LE distribution

F: H or LE

S: shaded area

US: un-shaded area

The secondary circulations and turbulence associated to cloud activity slightly change the surface flux distribution.