Budgets of scalar fluxes for cloudy boundary layers

Rieke Heinze, Siegfried Raasch

Institute of Meteorology und Climatology Leibniz University Hannover, Germany

Dmitrii Mironov

German Weather Service

20th Symposium on Boundary Layers and Turbulence, 2012 Session 11 – Boundary Layer Clouds: Part I 12 July 2012

- Turbulence closure models: most are based on truncated ensemble-mean budgets of second-moments
- So far: lack of comprehensive analysis for cloudy boundary layers

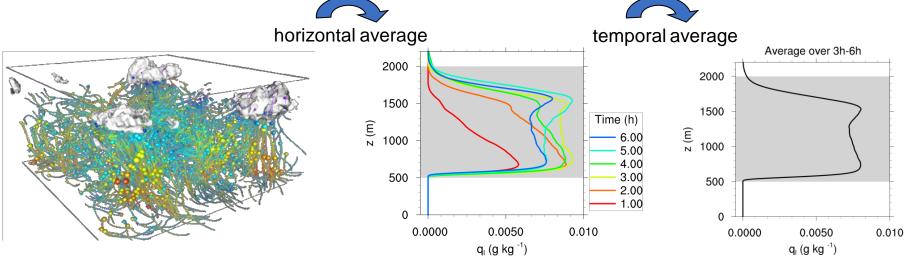
How do the scalar flux budgets look like?

- Method: large-eddy simulation (LES)
- Parameterization of pressure-scalar and pressure-velocity covariances is the key issue in second-order modeling

How do parameterizations of pressure-scalar covariance behave for cloudy boundary layers?

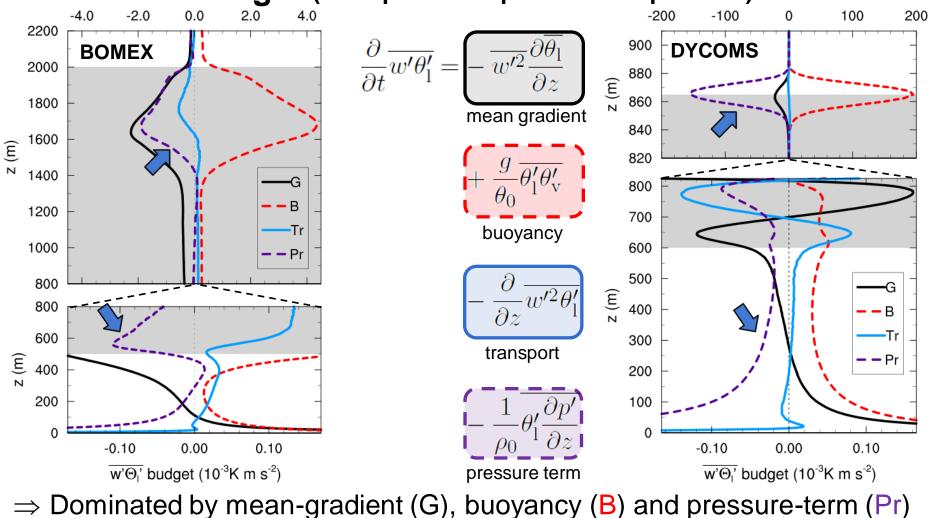
Method and setups

• Approximation to ensemble-mean budgets with LES:



- Explicit consideration of sub-grid scale budgets \rightarrow small residuals
- Simulations with PALM (palm.muk.uni-hannover.de)
 - Trade wind cumulus (BOMEX, Siebesma et al. 2003)
 - Nocturnal stratocumulus (DYCOMS-II (RF01), Stevens at al. 2005)

Scalar flux budget (s = liquid water potential temperature)

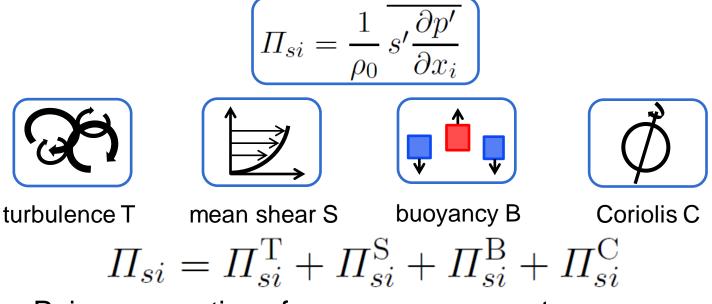


ł Leibniz Z Universität 4 Hannover

Modeling approach

annove

• First tested for slightly sheared CBL (Moeng and Wyngaard 1986)

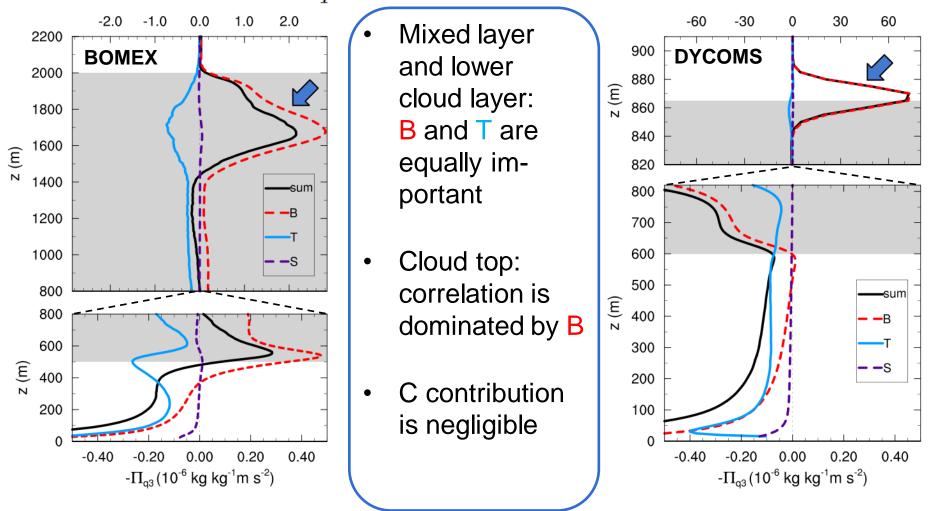


• Solve Poisson equations for every component \rightarrow

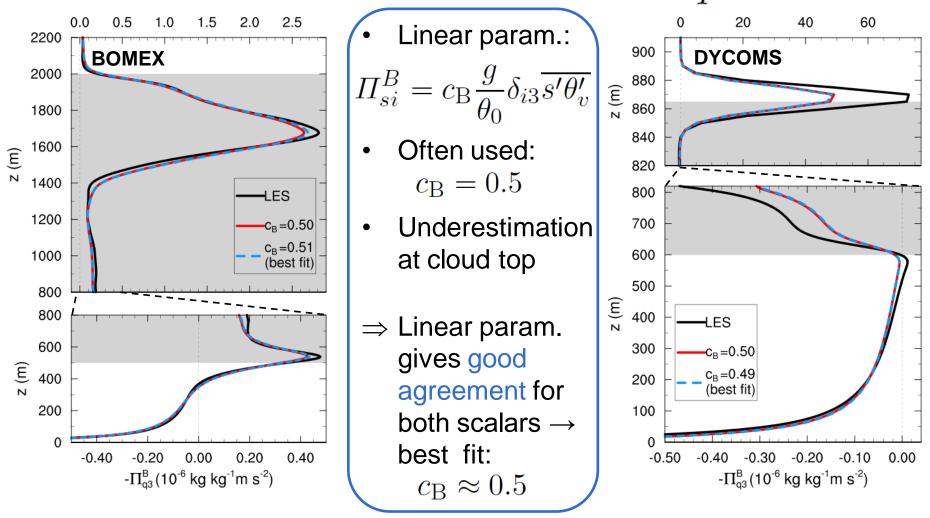
$$p' = p'_{\rm T} + p'_{\rm S} + p'_{\rm B} + p'_{\rm C}$$

- Analysis only possible with numerical data
- Implementation in PALM validated for free convection (Mironov 2001)

Contributions to Π_{q3} (q = total water specific humidity)



Parameterization test (I) – Buoyancy (s = q)



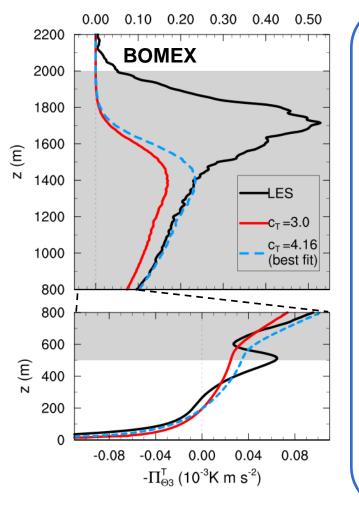
eibniz

100

Universität

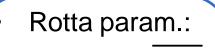
Hannover

Parameterization test (II) – Turbulence ($s = \theta_1$)



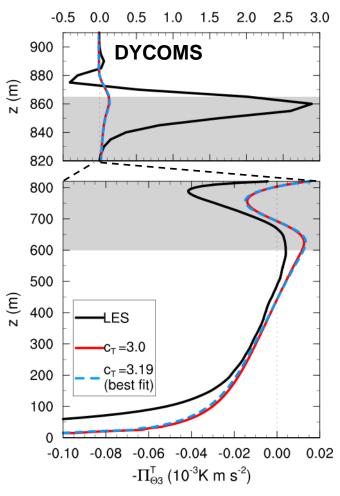
eibniz

Universität Hannover



$$\Pi_{si}^T = c_{\rm T} \frac{u_i' s'}{\tau}$$

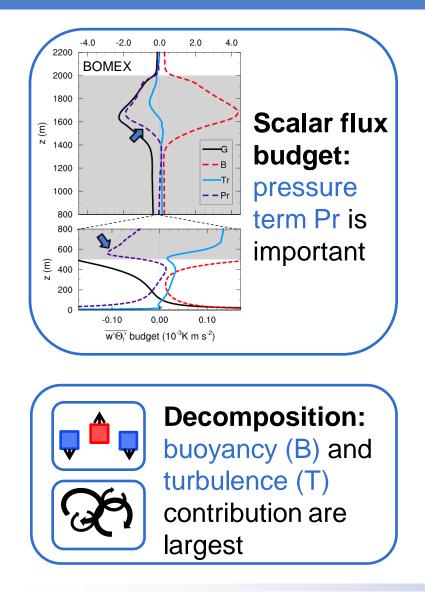
- Free convection: $c_{\mathrm{T}} pprox 3.0$
- Strong underestimation at cloud top
- ⇒ Rotta param.
 agrees fairly well
 below cloud top
 → but no uni versal best-fit value was found

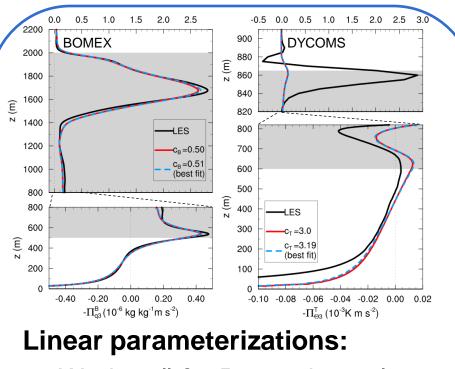


Motivation Budgets

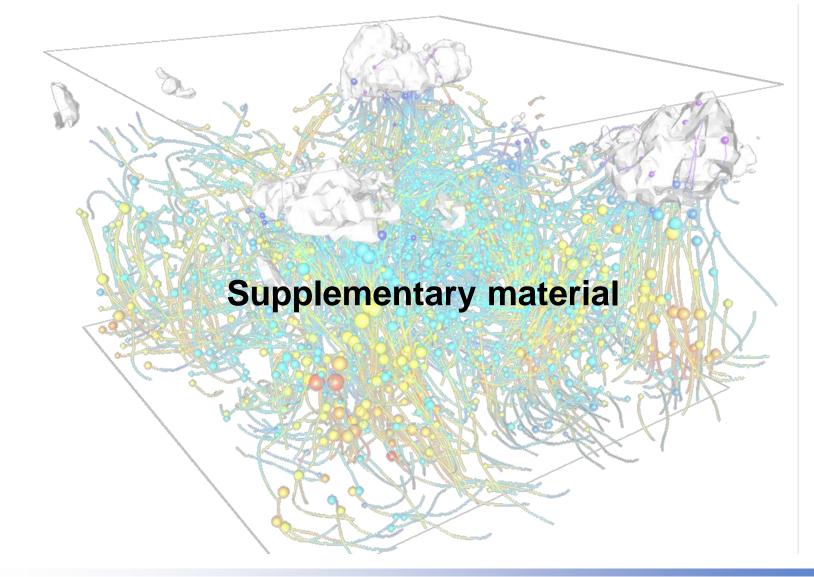
Pressure terms

Conclusions

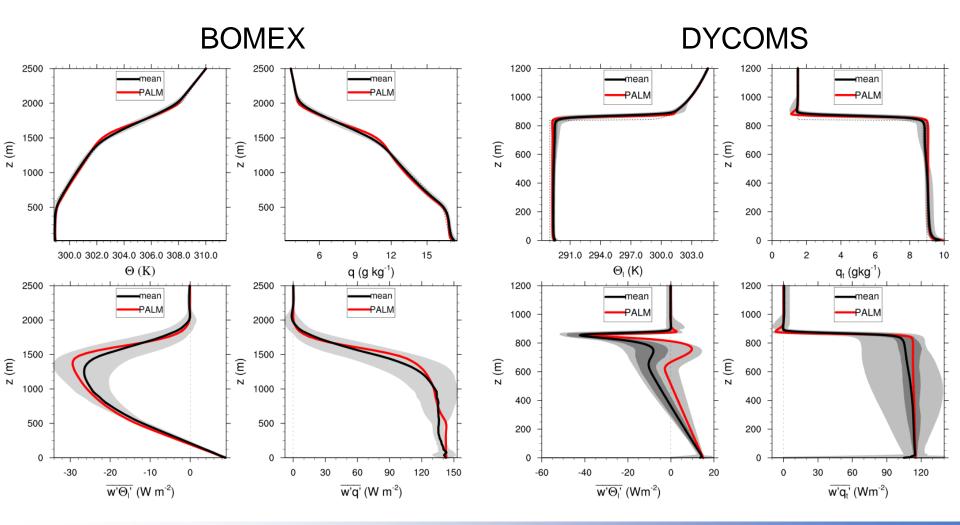




- Work well for $B \rightarrow universal c_B$
- Less satisfactory agreement for T $\rightarrow c_{T}$ depends on case and scalar
- ⇒ for higher accuracy: non-linear models necessary

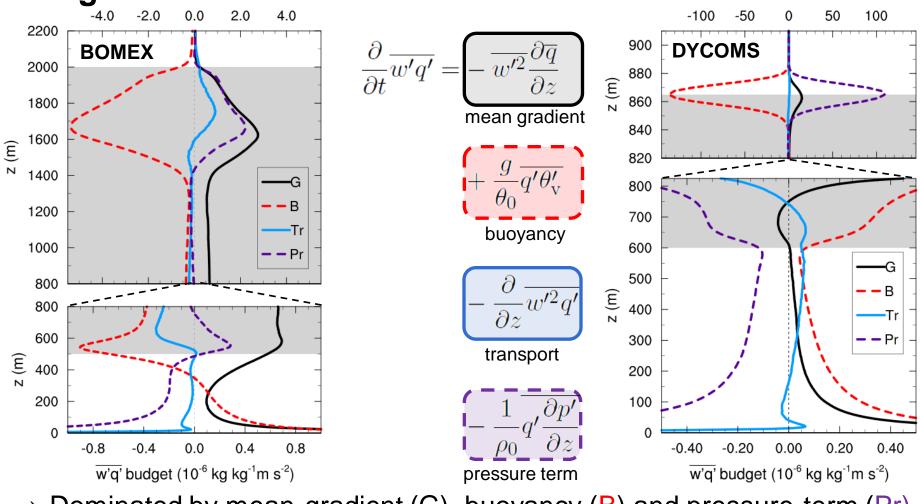


Mean scalars and scalar fluxes



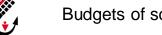
1 1 1 0 2 1 0 0 4 1 Leibniz Universität 1 0 0 4 Hannover

Budget of flux of total water content



 \Rightarrow Dominated by mean-gradient (G), buoyancy (B) and pressure-term (Pr)

1 1 Leibniz 102 Universität 1004 Hannover



Decomposition

 Poisson equations for contribtutions of pressure fluctuations

$$p' = p'_{\rm T} + p'_{\rm S} + p'_{\rm B} + p'_{\rm C} + p'_{\rm SG}$$

- Due to LES: also subgrid contribution SG (very small)
- Boundary conditions:
 - Bottom: Neumann
 - Top: Dirichlet

$$\frac{1}{\rho_0} \frac{\partial^2 p'_{\rm T}}{\partial x_i^2} = -\frac{\partial^2}{\partial x_i \partial x_j} \left(u'_i u'_j - \overline{u'_i u'_j} \right)$$
$$\frac{1}{\rho_0} \frac{\partial^2 p'_{\rm S}}{\partial x_i^2} = -2 \frac{\partial u'_j}{\partial x_i} \frac{\partial \overline{u}_i}{\partial x_j}$$
$$\frac{1}{\rho_0} \frac{\partial^2 p'_{\rm B}}{\partial x_i^2} = \frac{g}{\theta_0} \frac{\partial \theta'_v}{\partial x_3}$$
$$\frac{1}{\rho_0} \frac{\partial^2 p'_{\rm C}}{\partial x_i^2} = -\varepsilon_{ijk} f_j \frac{\partial u'_k}{\partial x_i}$$
$$\frac{1}{\rho_0} \frac{\partial^2 p'_{\rm SG}}{\partial x_i^2} = -\frac{\partial^2 \tau'_{ij}}{\partial x_i \partial x_j}$$

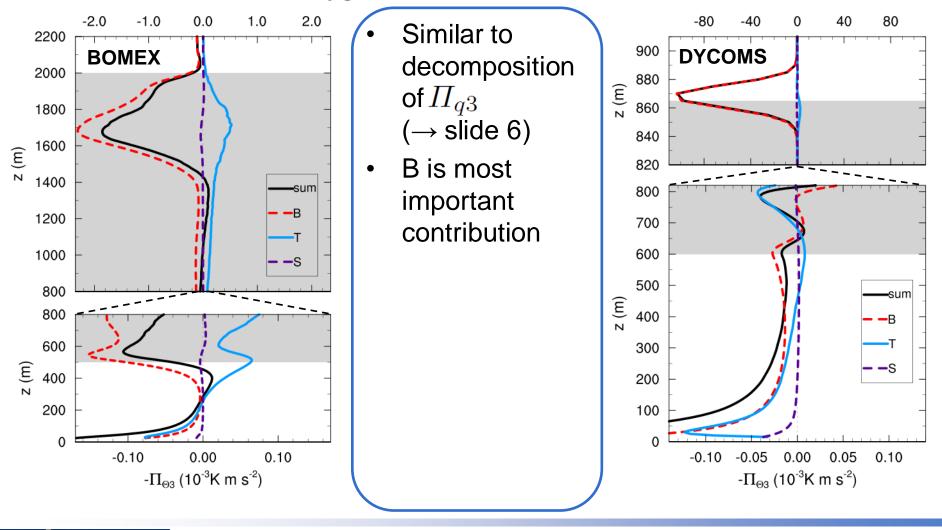
Contributions of $\Pi_{\theta 3}$

.eibniz

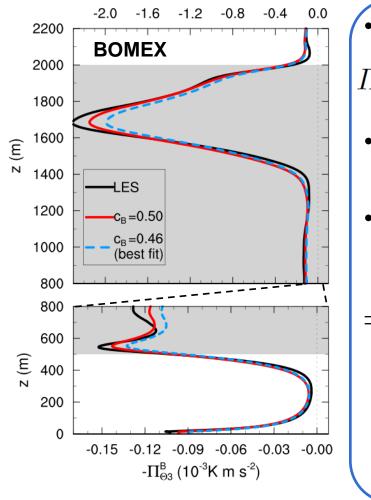
100

Universität

Hannover



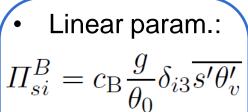
Parameterization test – Buoyancy ($s = \theta_1$)



eibniz

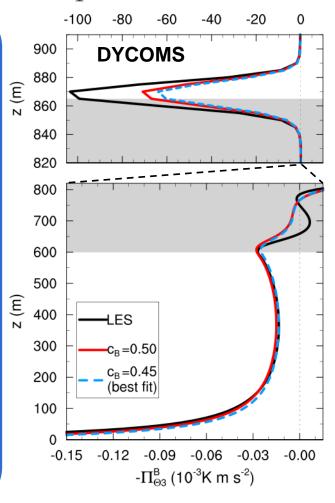
100

Universität Hannover

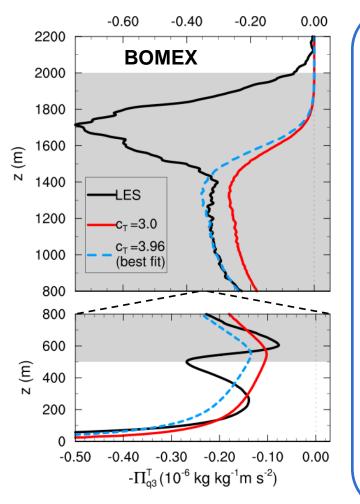


- Often used: $c_{\rm B} = 0.5$
- Underestimation at cloud top

⇒ Linear param. gives good agreement for both scalars → best fit: $c_{\rm B} \approx 0.5$



Parameterization test – Turbulence (s = q)



eibniz

100

Universität

Hannover

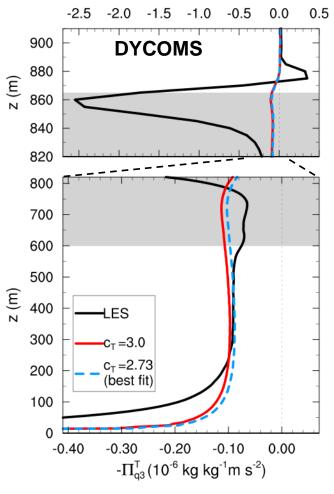
Rotta param.:

$$\Pi_{si}^T = c_{\rm T} \frac{\overline{u_i' s'}}{\tau}$$

• Free convection: $c_{\mathrm{T}} pprox 3.0$

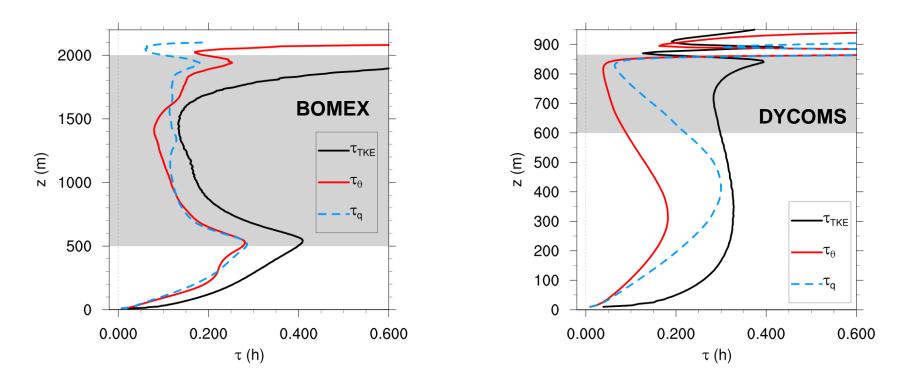
 Strong underestimation at cloud top

⇒ Rotta param.
 agrees fairly well
 below cloud top
 → but no uni versal best-fit value was found



Return-to-isotropy time scale

- Return-to-isotropy time scale is usally modeled as $\tau = \overline{e}/\overline{\varepsilon}$
- Instead: usage of other time scales: $\tau_{\theta} = \overline{\theta}_{l}/\overline{\varepsilon}_{\theta}$ or $\tau_{q} = \overline{q}/\overline{\varepsilon}_{q}$



l l Leibniz l o 2 Universität l o o 4 Hannover