WHITECAP FRACTION OF ACTIVELY BREAKING WAVES: TOWARD A DATABASE APPLICABLE FOR DYNAMIC PROCESSES IN THE UPPER OCEAN

Magdalena D. Anguelova and Paul A. Hwang

Remote Sensing Division
Naval Research Lab, Washington, DC 20375
Air-Sea Processes

- Sea spray flux
- Gas flux
- Sensible heat flux
- Latent heat flux
- Enthalpy flux
- Momentum flux
- Dissipation rate
- Ambient noise

Separate active whitecap fraction, Anguelova & Hwang, NRL
Air-Sea Processes and Whitecaps

- **Mass**
 - Sea spray flux
 - Gas flux

- **Heat**
 - Sensible heat flux
 - Latent heat flux
 - Enthalpy flux

- **Energy**
 - Momentum flux
 - Dissipation rate

- **Whitecap fraction \(W \)**
 - The fraction of ocean surface covered with foam
 - Includes all stages of whitecap lifetime

- **Active whitecap fraction \(W_A \)**
 - Foam associated with breaking wave crests
 - Only the initial stages of whitecap lifetime
 - The foam moves along with the wave

Separate active whitecap fraction, Anguelova & Hwang, NRL

7/10/2012
Features:
- Similar spatial distributions
- Different magnitudes

Our advantage:
- Objective method
- Global data
- Variability

Wind speed formula:
- Conventional $W(U_{10})$ model*:
 $W = 3.84 \times 10^{-6} U_{10}^{3.41}$
- U_{10} from QuikSCAT or GDAS

* Monahan and O’Muircheartaigh (1980)
Theoretical approach

- **Physical basis**
 - Phillips concept
 - Expression $W_A(\varepsilon)$

- **Realization**
 - Regionally
 - Buoy data
 - Globally
 - WindSat data

Experimental approach

- **Physical basis**
 - Foam IR signature
 - Cold and Hot foam

- **Realization**
 - Field campaign
 - Many instruments

- **Poster #63**
 - St. George
PHILLIPS CONCEPT

- **Breaking crest length distribution:**
 \[\Lambda(\bar{c}), \Lambda(\bar{c})d\bar{c} \quad \bar{c}, \bar{c} + d\bar{c} \]

- **Active whitecap fraction:**
 \[W_A = \int_c Tc \Lambda(\bar{c}) \, d\bar{c} \]

- **Energy dissipation:**
 \[\varepsilon(\bar{c}) \, d\bar{c} = bg^{-1} c^5 \Lambda(\bar{c}) \, d\bar{c} \]

- **\(W_A(\varepsilon) \) relationship:**
 \[W_A(\varepsilon) = gTb^{-1} \int_c c^{-4} \varepsilon(\bar{c}) \, d\bar{c} \]

- **Expression for \(\varepsilon(\bar{c}) \, d\bar{c} \) from the wave spectrum**

- **Integrate over \(c \) and obtain:**
 \[W_A(\varepsilon) = \frac{gT}{4b\rho_w c_{min}^4 \ln(c_{max}/c_{min})} \langle \varepsilon \rangle \]

- **Need \(\langle \varepsilon \rangle, T, b, c_{min}, \) and \(c_{max} \)**

\(\bar{c} \) is breaking fronts velocity

Separate active whitecap fraction, Anguelova & Hwang, NRL

7/10/2012
Total Dissipation Rate \(\langle \varepsilon \rangle \)

- **Parametric approach**
 - Hwang and Sletten (2008)

\[
\langle \varepsilon \rangle = \alpha \rho_a U^3, \quad \alpha = 0.2 \omega_*^3 \eta_*
\]

- Wind speed \(U \),
- Wave parameter \(\alpha \)
- \(\omega_* \), \(\eta_* \) non-dimensional frequency and surface elevation
- Air density \(\rho_a \)

- Wave spectra data from buoys
 - Wave period \(T_p \) and
 - Significant wave height \(H_s \)

- **Separate swell** (Hwang et al., 2012, JPO)

7/10/2012
Separate active whitecap fraction, Anguelova & Hwang, NRL
PARAMETER VALUES

- T, b, c_{min}, and c_{max}

- Breaking parameter $b = 0.0153$

- Bubbles persistence $T = 2$ s
 - Callaghan et al. (2012)
 - T influence by the wave field (limited)
 - Other factors: salinity, SST, surfactants

- Breaker speed $c_{\text{min}} = \alpha c_{pw}$, $c_{pw} = \frac{gT_{pw}}{2\pi}$
 - $\alpha_c = 0.3$
 - Gemmrich et al., 2008; fully developed sea
 - Others suggest $\alpha_c \geq 0.8$
 - $c_{\text{min}} \in (1.8 \text{ to } 5.6)$ m s$^{-1}$

- $c_{\text{max}}/c_{\text{min}} = 10$

\[
W_A(\varepsilon) = \frac{gT}{4b\rho_w c_{\text{min}}^4 \ln (c_{\text{max}}/c_{\text{min}})} \langle \varepsilon \rangle
\]
ACTIVE WHITECAP FRACTION PHILLIPS-BUOY

Separate active whitecap fraction, Anguelova & Hwang, NRL
ACTIVE WHITECAP FRACTION PHILLIPS-BUOY

Separate active whitecap fraction, Anguelova & Hwang, NRL
ACTIVE WHITECAP FRACTION PHILLIPS-BUOY

Separate active whitecap fraction, Anguelova& Hwang, NRL
Active whitecap fraction Phillips-Buoy

Separate active whitecap fraction, Anguelova & Hwang, NRL
Active Whitecap Fraction Phillips-Buoy

\[b = 0.0153 \]
\[T = 2 \text{ s} \]
\[c_{min} = 0.3 c_{pw} \]

![Graph showing active whitecap fraction with data points and lines representing different models: Buoy $W_A(\epsilon)$, MOM80 $W(U_{10})$, Radiom $W(10H)$, Radiom $W(37H)$](image)
ACTIVE FROM TOTAL WHITECAP FRACTION

- Having $W_A(\varepsilon)$ from buoy data
- Make match-ups with W from WindSat
 - $0.5^\circ \times 0.5^\circ$ around buoy position
- Find scaling factor $R = W_A/W$
- Buoy-satellite match-ups at different latitudes
- Parameterize R in terms of
 - Wind speed or
 - Geography (lat, lon)
- Use W database from satellites and R to build W_A database
Separate active whitecap fraction, Anguelova & Hwang, NRL
ACTIVE WHITECAP FRACTION PHILLIPS-BUOY

Buoy 46001, 56.3N

Wind speed, U_{10} (m/s)

Whitecap fraction, W (%)
Active whitecap fraction Phillips-Buoy

Buoy 41001, 34.6N

Whitecap fraction, W (%) vs. Wind speed, U_{10} (m/s)

Photo W
Photo W_A
Buoy $W_A(\epsilon)$
MOM80 $W(U_{10})$
Separate active whitecap fraction, Anguelova & Hwang, NRL
Active whitecap fraction Phillips-Buoy

Buoy 41012, 30.0N

Wind speed, U_{10} (m/s)

Whitecap fraction, W (%)
ACTIVE WHITECAP FRACTION PHILLIPS-BUOY

Buoy 41010, 28.9N

Whitecap fraction, W (%) vs. Wind speed, U_{10} (m/s)

- Photo W
- Photo W_A
- Buoy $W_A(\epsilon)$
- MOM80 $W(U_{10})$

7/10/2012
Separate active whitecap fraction, Anguelova& Hwang, NRL
Scaling Factor W_A/W
Spatial Variations

Separate active whitecap fraction, Anguelova & Hwang, NRL
SUMMARY

- Obtain W_A from W on a global scale using satellite data
- Phillips concept to obtain W_A from dissipation rate ε
- Buoy data for wave spectrum
 - Remove swell
 - Parametric approach to obtain $\langle \varepsilon \rangle$
 - Choose values for coefficient of proportionality
 - Calculate $W_A(\varepsilon)$
- Obtain scaling factor $R = W_A/W$ in various regions

Future work:
- Validate $\langle \varepsilon \rangle$ with independent measurements, previous and new
- Refine choices for T, b, c_{min}, and c_{max}
- Parameterize R

Separate active whitecap fraction, Anguelova & Hwang, NRL
Wind direction

W

W_A

Photo courtesy of Prof. William M. Drennan, RSMAS, Miami

Separate active whitecap fraction, Anguelova & Hwang, NRL