The many faces of oceanic whitecaps: A multi-instrument field campaign

- Whitecaps are surface expression of breaking wind waves
- Whitecap fraction W quantifies the area covered with foam
- W is suitable forcing variable to parameterize and predict various air-sea interaction processes

Whitecaps are surface expression of breaking wind waves. Whitecap fraction W quantifies the area covered with foam and is suitable for parameterizing and predicting various air-sea interaction processes.

Goal of the field campaign: Collect experimental data to determine W_A and W_B independently from the Phillips concept for energy dissipation.

Instruments:

- **Whitecaps**
 - Infrared Camera
 - Microwave radiometers (10 & 37 GHz)
 - Visible (video) cameras
- Underwater bubbles—acoustics array at 4 freqs
- Sea spray in the air—particle counter
- Auxiliary data
 - Meteorological data (meteo station)
 - Wave field (wave wires)
 - Water temperature profile (thermistor array)
 - Near-by buoys

Experimental approach: W_A using Infrared signature

- Distinctly different signatures of W_A and W_B in the IR region
- Different but weak signatures of W_A and W_B in the MW region
- Use the IR to gain insights for the MW

Infrared

- Mid-wave infrared
- Visible

Microwave

- 15 GHz
- 19 GHz

Acoustics

- 19-54:06 UTC
- 19-55:32 UTC
- 19-57:07 UTC

Photographic and radiometric observations provide total W, including foam generated during active breaking of waves and residual foam left behind waves. The active phase of whitecaps is associated with dynamic air-sea processes in the upper ocean:

- Turbulent mixing
- Gas exchange
- Spray-mediated storm intensification
- Ambient noise

A database of W_A separate from W_B is needed.

Magdalena Anguelova, David Dowgiallo, Geoffrey Smith, Steven Means, Ivan Savelyev, Glendon Frick, Charlotte Snow, Jeffrey Schindall, and Justin Bobak

Remote Sensing Division, Naval Research Laboratory, Washington, DC, USA

W is obtained from photographs of sea state.

W can also be measured from satellites using passive microwave (MW).

Extensive database of satellite-based W is compiled with many additional variables.