

High resolution urban air quality modeling with an immersed boundary method in WRF

David J. Wiersema¹, Katherine A. Lundquist², Phil Martien³, Tom Rivard⁴, Fotini Katopodes Chow¹ ¹Department of Civil & Environmental Engineering, University of California, Berkeley ³Bay Area Air Quality Management District ²Atmospheric Sciences Division, Lawrence Livermore National Laboratory ⁴San Francisco Department of Public Health

• Interest in modeling urban air quality San Francisco Department of Public Health

- Bay Area Air Quality Management District City of San Francisco
- Proposed affordable housing development Located downwind from interstate 280
- 250,000+ vehicles per day
 - Modeling using IBM-WRF Complex terrain
 - Building-resolving
 - Mesoscale to microscale nesting
 - Realistic meteorological input

Proposed affordable housing location

25-30 20-25 15-20 10-14 5-10 0-5

- Proposed development location is within the San Bruno gap • An opening in the coastal mountains • Funnels the seabreeze from the Pacific Ocean
- Creates consistent westerly winds

Windrose from SFO met tower June 2011 - May 2012

WRF TO IBM-WRF NESTING

- Concurrent one-way nesting from WRF domain to IBM-WRF domain
- Currently in development!
- Enables transfer of meteorological information from mesoscale to microscale Issue of illresolved terrain features on middle resolution nests
- Virtual buildings / addition of drag to nodes within poorly resolved terrain features

122°10'W 122°40'W 122°30' 122°20'W

IBM-WRF

• Lundquist et al. 2010, 2012

INTERPOLATION TECHNIQUE

- interpolation scheme
- Equation #2

CONCLUSIONS

through complex urban terrain urban air quality modeling

Lundquist, K.A., Chow, F.K., and J.K. Lundquist. 2012: An immersed boundary method enabling large-eddy simulations of complex terrain in the WRF model. Monthly Weather Review, in press.

wiersema@berkeley.edu

If you have any questions please contact me at wiersema@berkeley.edu

Preliminary testing shows that IBM-WRF performs well when simulating flow

• With continued modification, IBM-WRF will be well equipped for high resolution

Lundquist, K.A., Chow, F.K., and J.K. Lundquist. 2010: An immersed boundary method for the Weather Research and Forecasting model. *Mon. Weather Rev.* **138** (3), 796-817. Lundquist, K.A. 2010: Immersed boundary methods for high resolution simulation of atmospheric boundary-layer flow over complex terrain. Ph.D. thesis, University of

