MOTIVATION

- Interest in modeling urban air quality
 - San Francisco Department of Public Health
 - Bay Area Air Quality Management District
 - City of San Francisco
- Proposed affordable housing development
 - Located downwind from interstate 280
 - 250,000+ vehicles per day
- Modeling using IBM-WRF
 - Complex terrain
 - Building-resolving
 - Mesoscale to microscale nesting
 - Realistic meteorological input

DOMIAN

- Semi-idealized domain setup for preliminary testing
 - Outer domain
 - Flat plate
 - Periodic boundary conditions
 - Run for 2 hours to develop turbulence
 - Inner domain
 - Includes buildings from a San Francisco Department of Public Health dataset
 - 1-way nested configuration

IBM-WRF

- Lundquist et al., 2010, 2012
- Weather Research and Forecasting model (WRF) modified to use an immersed boundary method (IBM)
 - Allows representation of urban geometries in WRF
 - Cartesian rather than terrain following vertical coordinate
 - Terrain intersects grid, resulting in “cut cells”
 - Computational nodes in solid domain & adjacent to cut cells are “ghost-points” (black circle)
- Ghost-point values establish appropriate boundary conditions through addition of body force term to conservation equations for momentum & scalars (equations #1a & #1b)

RESULTS

Vertical east-west slice through domain midpoint

- log10 Scalar Concentration
- WRF terrain-following grid
- IBM-WRF Cartesian grid
- One meter resolution
- Three meter resolution
- Ten meter resolution

WRF TO IBM-WRF NESTING

- Concurrent one-way nesting from WRF domain to IBM-WRF domain
- Currently in development
- Enables transfer of meteorological information from mesoscale to microscale
- Issue of illresolved terrain features on middle resolution nests
- Virtual buildings / addition of drag to nodes within poorly resolved terrain features

CONCLUSIONS

- Preliminary testing shows that IBM-WRF performs well when simulating flow through complex urban terrain
- With continued modification, IBM-WRF will be well equipped for high resolution urban air quality modeling

REFERENCES

ACKNOWLEDGEMENTS

Funding provided by the Bay Area Air Quality Management District

Environmental Fluid Mechanics, University of California, Berkeley

Contact me at wiersema@berkeley.edu