Hurricane Sea-to-Air Heat Transfer

Louis M. Michaud, AVEtec Energy Corporation.

Hurricane Sea-to-Air heat fluxes:

- from C_E 100 W/m² to 1000 W/m²
- from precipitation 100,000 W/m²
- from sea cooling 100,000 W/m²

Outline:

- Review of calculation methods
- Spray heat transfer
- Eddy correlation
- Evidence in favor of high heat flux

Heat flux calculated from heat transfer equation

Note figure from: Black et al. BAMS March 2007

Heat Transfer Equation

 $Q_a = \rho C_E (h_s - h_a) u$

Tropical sea light wind for SST=25.5 °C, P=100 kPa $T_a = 24.5$, RH_a = 80%, h_s =79000, h_a =64800 J/kg u = 5 m/s $Q_a = 100$ W/m²

<u>Hurricane eyewall</u> for: SST = 26 °C, P = 95 kPa $T_a = 24.5$, RH_a = 95%, $h_s=84200$, $h_a=74800$ J/kg u = 50 m/s $Q_a = 600$ W/m²

Heat flux from rain and sea cooling

$$\label{eq:cooling} \begin{split} \overline{\textbf{Prom sea cooling}} & \ \overline{\textbf{Q}_t} = \textbf{C}_w \ \Delta \textbf{T} \ w \ d \ v \\ & \ \text{for: } \Delta \textbf{T} = 2.5 \ \text{°C}, \ d = 100 \ \text{m} \\ & \ w = 100 \ \text{km}, \ v = 5 \ \text{m/s} \\ & \ \textbf{Q}_t = \textbf{524 \ TW} \end{split}$$

Per unit spray production area $Q_e = Q / A$ for: Q = 500 TW, A = 2500 km², L = 50 km, w = 50 km $Q_e = 200,000 \text{ W/m}^2$ Per unit spray distribution area $Q_a = 40,000 \text{ W/m}^2$

- 2500 km² green rectangle Spray production area.
- •12,500 km² red circle Spray deposition area.

HURRICANE SEA COOLING PROCESS

Hurricane Isabel effect on sea surface temperature as observed from satellite

From: D'Asaro et al. GRL 2007.

Sea cooling:

- takes place during hurricane passage.
- is concentrated near the hurricane.
- extends to depths of 50 to 100 m.

Notes:

- Blue ovals zone of high cooling.
- Blue dashes hurricane position

What does Eddy Correlation see in the previous steady-state case?

Effect of mean upward velocity on heat flux

Mean upward velocity contribution

Eddy correlation contribution

$$Q = \overline{m} m_v L_v + \Sigma w' h'$$

 $\mathbf{Q} = \rho \,\overline{\mathbf{w}} \, \mathbf{m}_{\mathbf{v}} \, \mathbf{L}_{\mathbf{v}} + \Sigma \, \mathbf{w}' \mathbf{h}'$

 $Q = 1.0 \times 2 \times 20 \times 2500 + 0.2 (2 \times 2 \times 1000)$

 $Q = 100,000 + 800 = 100,800 \ W/m^2$

Possible Sea-to-air heat transfer equation new form

	Sample heat Flux	<u>es</u>
<u>Velocity</u>	Interfacial	<u>Spray</u>
w (m/s)	Q _i (W/m²)	Q _s (W/m ²)
50	600	100000
40	484	32800
25	302	3125
10	121	32
5	60	1

Rough Estimate of Convective Sea-to-Air Heat Fluxes

	<u>Average (W/m²)</u>	<u>Total (PW)</u>
Entire Earth	102	52
Land	102	16
Sea	102	36
Sea interfacial (Dalton Equation)	72	25
Sea Spray - Tropical Cyclones	>10,000	2
Sea Spray - non tropical cyclone spray	<10,000	9

Further of evidence in favor of high sea to air heat flux hypothesis

- The heat content of sea water is much greater than that of air.
- Hurricanes significantly reduce the heat content of the sea.
- The heat content of the tropical air is not significantly reduced.
- •The heat must come from the sea.
- Huge quantities of heat can be transferred from sea to air through isenthalpic mixing of spray and air.

<u>Thank you</u>

More information available in forthcoming paper: On Hurricane Energy by: Louis M. Michaud in Meteorology and Atmospheric Physics

> and at: www.vortexengine.ca