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SLP-Filtered Tropical Cyclone (TC) 
SAR Wind Vector Fields 

• SLP acts as a low-pass filter 
– Forces dynamical consistency 
– Winds at 1 km pixels 

• Can calculate (hopefully) credible derivative fields 
• Consistent signature in all SAR TC divergence fields: 

– O(~10 km) wavelength (λ) convergence bands 
– h (~ 1 km) is PBL depth 
– Look like PBL rolls, but aspect ratio (λ/h) is too large 

• O(1-3 km) PBL rolls are very common feature of TC PBL 
 



Wavelength: Larger-scale structures ~ 1500 to 2000 m 
                     Smaller-scale structures ~ 300 to 700 m 

Velocity Perturbations: +/- 7 m s-1 typical 
                       up to  +/- “10s of” m s-1 small-scale 

Orientation: Typically along-mean TCBL wind, wide variability 

Prevalence: Roll-scale structures common, (35% to 70%) 
                    Streak-scale structures: Most likely usually present 



Hypothesis 
• THE CONVERGENCE LINES ARE THE SIGNATURE OF LARGE ASPECT RATIO 

TC PBL ROLL VORTICES 
– Theory and observations agree that the common TC PBL rolls 

have aspect ratio O(2-4) 
– Large aspect ratio modes are slowly-growing; not expected to 

survive competition with much faster-growing dominant rolls. 
• Proposed Mechanism: UPSCALE ENERGY TRANSFER FROM 

DOMINANT (λ ∿ 1-3 KM) MODES INTO WEAK (λ ∿ 10 KM) MODES 
THROUGH RESONANT TRIAD WAVE-WAVE INTERACTION 
– Based on 2-D Ekman layer model of Mourad and Brown (1990);  
– +6 contributions omitted in MB90 
– First step: Low-order truncation 



Single-Wave Roll Theory 
Nonlinear Stability 

• “Stretch” eigenvalue, λ0, in powers of nonlinear amplitude, A(t). 
• Expand eigenfunction, q10, in harmonics of fundamental wavenumber, 

α, and forced modifications 
• Forced fundamental modifications are orthogonal to linear mode 
• Determine Landau Coefficients (the λi) 

• Estimate equilibrium Amplitude (dA/dt = 0) & structure, q = [u,v,w,T]T 



To 1st Nonlinear Landau Term: 
0        + A2q01                                                 (mean flow modification) 
Aq10 + 0              + A3q11                                              (fundamental wavelength) 
0        + A2q20                                                                        (1st harmonic) 
0        + 0              + A3q30                             (2nd harmonic)   

Standard Single-Wave PBL Roll Model 

Truncated Contributions 
to Multi-Wave Roll Model 

q= [u, v, w, T]T 



Low-Order Truncation Errors 

Mean-flow Modification Amplitude Estimation 

Low-order truncation:  
• Over-estimated amplitude 
• “S-shaped” MF modification 



Upscale Transfer Resonant Triad 

• α = β + γ (mode A, mode B, mode C) 
• My nonlinear solution method restricts me1 to 

all unstable modes 
• Require at least one wavenumber at fastest 

growing mode 
• For upscale transfer (into small wavenumber), 

intermediate wavenumber is usually also fast-
growing 

1but not necessarily reality 



Truncated 3-Mode Roll Solutions 

qα = Aq0,α + BCq1,αeiφ  + A[A2q2,α+ B2q3,α + C2q4,α] +     
 A2q20,α + A3q30,α 
qβ = Bq0,β + ACq1,βe-iφ + B[A2q2,β + B2q3,β + C2q4,β] + 
 B2q20,β + B3q30,β 
qγ = Cq0,γ + ABq1,γe-iφ  + C[A2q2,γ + B2q3,γ + C2q4,γ] + 
 C2q20,γ+ C3q30,γ 
 

ϕ = θ𝐴 −  θ𝐵 −  θ𝐶 ,
  

• YELLOW: contributions from single-wave theory; e.g. q2,α = q11,α . 
• BLUE: new wave-wave & wave-mean flow interaction contributions.  
• RED: Low-order phase-coupling terms. 
• Also: mean-flow modifications due to each wave. 



Truncated Model 
Amplitude (real) and Phase (imaginary) 
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• ϕ = θ𝐴 −  θ𝐵 −  θ𝐶  (Wave phase imbalance) 
• α = β + γ (resonant triad wavenumbers) 

• The ai, bi, ci are Landau coefficients, calculated via an orthogonalization 
assumption (nonlinear wave-wave & wave-mean flow interactions) 

• Highest-order (bracketed) terms force equilibrium; dominated by single-wave 
contributions (a2A2, b3B2, c4C2) 

• Lower-order phase coupling allows inter-scale energy transfer, ENHANCES GROWTH 
RATE OF  SLOWEST-GROWING MODE, ESPECIALLY DURING QUASI-LINEAR PHASE 



Quasi-Linear Approximation 
Assume: A is fastest-growing 
                 C is slowest growing 
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= c0C + ⎹c1⎸AB  cos(φ - φγ) 
• ∆ω = ωα - ωβ - ωγ  
• λα = a0 + i ωα  , (& etc., eigenvalues) 
• c1 = ⎹c1⎸𝑒𝑖ϕγ, (& etc., QL Landau coef.) 

 
 
 

Enhanced growth of C if: 
 φ - φc1 ∿ 2nπ 

A,B grow faster than C: 
∴ This term dominates 𝑑ϕ

𝑑𝑑
  



Quasi-Linear Approximation (cntd.) 

• 𝑑ϕ
𝑑𝑑

∿⎹c1⎸ 𝐴0𝐵0

𝐵0
  𝑒(a0+b0−c0)tsin(φ - ϕγ) 

– Can solve by separation of variables 
– Net effect: φ - φγ→ 2nπ 

• 𝑑𝐵
𝑑𝑑

⇢ c0C + ⎹c1⎸AB 
– Accelerates growth of mode C 



Quasi-Linear Phase-Coupling: 
Energizing Slowest-Growing Mode 

Accelerated growth of slow mode (C) Starts when (φ - φc1 )  2πn 

Phase Imbalance: 
φ = θA – θB + θC 

A 

A 
C 

C 

QL Landau Coefficient: 
c1 = ⎹c1⎸𝑒𝑖ϕγ  



TC PBL Mean Flow from Foster (2009) 





Dominant modes match observations 
~sub-km to 2 to 3 km wavelengths 
~wind-aligned 

Large aspect ratio  modes are too slowly-growing 
To compete with lower aspect ratio modes 

Fast-growing, O(2.5) 
Aspect Ratio Modes 

Slow-growing, O(10) 
Aspect Ratio Modes 

GROWTH RATE CONTOURS VS. WAVENUMBER AND ORIENTATION ANGLE 



Contours are Overturning Flow Streamfunction (ψ) 
Colors are:  
• top, VERTICAL VELOCITY (W) (top) 
• bottom, ALONG-ROLL (U┴) 
NOTE: LARGE ASPECT RATIO MODES EXTEND ABOVE THE PBL TOP (~1.2 KM) 



Any Other Evidence? 



Note: Their definition of aspect ratio is different 

MWR, 126, 1998 



Motivation for Study 

• Can this signal be used to improve SAR (or 
UHR scatterometer) surface wind retrievals? 
– Orientation relative to the surface wind, mean 

shear, mean PBL wind? 

• Do the large rolls affect PBL fluxes? 
• Do they affect air-sea interaction? 

– Wind stress curl? 



Signature may be clearer in (ρ=const) WSC than in DIV 



Summary 
• ALL SAR TC SCENES SHOW SURFACE WIND ORGANIZATION AT O(10 KM) 

WAVELENGTH; CONSISTENT WITH LARGE ASPECT RATIO PBL ROLLS 
– 1 km SAR wind pixels (from 25 m σ0 pixels); SLP-filtered winds 
– Consistent with Gall et al. (1998) radar data and brand-new Gruskin & Tripoli 

numerical modeling research 
• LOW-ORDER PHASE COUPLING IN WAVE-WAVE INTERACTION MODEL FEEDS ENERGY 

FROM THE DOMINANT ROLLS INTO THE SLOWLY-GROWING LONG-WAVELENGTH ROLLS 
– TC PBLs nearly always form O(1-2 km) wavelength rolls 
– Simple and reasonable mechanism for large aspect ratio rolls 
– Mechanism remains to be proven by experiment 

• Future work 
– Does this mechanism explain variability in detection of 2 km rolls in TCs? 
– Extend to non-co-linear waves (string of pearls) 
– Cold-air outbreaks 
– Higher-order truncations 
– Understand QL Landau Coefficients 



Extra Slides 



Zach Gruskin (grad student) and Prof. Greg Tripoli, 
Univ. Wisconsin (pers. comm.) 

133 km box 
15 m Divergence field 

333 m resolution numerical  
model of TC-like flow 
10 km organized convergence is 
consistent feature in the simulations 



Wurman and Winslow (1998)  
Science, 280, 555-557 

~30 m/s mean +/- 15 m/s  
across-roll variation in 
low-level wind 



Transfer Moderate (~3 km) to Small (sub-km) Scales 







Wavelength: ~ 6km; orientation : – 16o  

Non-local 
vw (~along) 

Non-local 
uw (~across) 



How do rolls fit into overall TCBL momentum balance? 

Rolls nonlocally transfer Super-Gradient 
Jet momentum towards surface 

Weakened near-surface 
inflow near and inside RMW 
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