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1. INTRODUCTION

In numerical weather prediction and climate models, tur-

bulence has to be parameterized because the scales of tur-

bulence are much smaller than the grid spacing typically

used. Most turbulence closure models are based on trun-

cated ensemble-mean budget equations for the second-

order moments of fluctuating velocity and scalar fields.

Although these budgets have a fundamental importance

for turbulence modeling, there is still a lack of system-

atic and comprehensive analysis of second-moment bud-

gets, especially for cloudy boundary layers. There are

numerous large-eddy simulation (LES) studies which fo-

cus on the turbulence kinetic energy (TKE) budget of

cloudy boundary layers (e.g. Moeng, 1986; Brown, 1999;

Chlond and Wolkau, 2000). However, other second-

moment budgets, for example, budgets of scalar vari-

ances (e.g. de Roode and Bretherton, 2003; Neggers,

2009) and of Reynolds stress (e.g. Cuijpers et al., 1996),

are poorly investigated. Using very high resolution LES

of cumulus-topped and stratocumulus-topped boundary

layer flows, we have performed a detailed analysis of the

budgets of the Reynolds stress (including its trace, i.e.

the TKE), of the scalar fluxes, and of the scalar variances.

The present study focuses on the scalar-flux budgets. The

main question addressed here is how the scalar-flux bud-

gets and the so-called pressure-scrambling terms in the

budgets behave in the presence of shallow clouds.

Modeling the pressure-scrambling terms, i.e. the

pressure-scalar and pressure-velocity covariances in the

scalar-flux and Reynolds-stress budgets, is one of the

key issues in second-order turbulence modeling (e.g.

Mironov, 2001, 2009; Hanjalić and Launder, 2011). Us-

ing data sets generated with LES, models (parameter-

izations) of the pressure-scrambling terms have been

tested for dry convective (Moeng and Wyngaard, 1986;

Mironov, 2001) and neutral (Andrén and Moeng, 1993)

boundary layers. Similar tests for cloudy boundary lay-

ers were not performed so far. In the present study,

some parameterizations of the pressure-scrambling terms
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in the scalar-flux budgets are tested against data from

LES of cloudy boundary layers. Based on the conven-

tional modeling approach for the pressure terms (e.g.

Hanjalić and Launder, 2011), the pressure-scalar covari-

ances are decomposed into contributions due to non-

linear turbulence-turbulence interactions, mean velocity

shear, buoyancy, and Coriolis effects, and models (pa-

rameterizations) for these contributions are tested against

LES data. It should be noted that such tests can only

be performed on the basis of numerical data from LES

or from direct numerical simulations. Apart from the

fact that in situ measurements of fluctuating pressure are

rather difficult (Wilczak and Bedard, 2004), the above

decomposition of the fluctuating pressure is simply im-

possible on the basis of observational data.

In what follows, a standard notation is used where

t is time, xi = (x,y,z) are the Cartesian coordinates,

ui = (u,v,w) are the velocity components. θ is the poten-

tial temperature, θv is the virtual potential temperature,

qv is the water vapor specific humidity, p is the pertur-

bation pressure, g is the acceleration due to gravity, f

is the Coriolis parameter, and θ0 and ρ0 are reference

values of potential temperature and density, respectively.

A generic variable s denotes a quasi-conservative scalar,

that is either the liquid water potential temperature θl or

the total water specific humidity q. The Einstein summa-

tion convention for repeated indices is used. An overbar

() and a single prime ()′ denote a resolved-scale (filtered)

variable carried by the LES model and a deviation there-

from (i.e. a sub-filter scale fluctuation), respectively. A

horizontal mean is denoted by angle brackets 〈()〉, and

a deviation therefrom (i.e. a fluctuation of the filtered

quantity about a horizontal mean) is denoted by a double

prime ()′′. Then, a fluctuating variable a can be repre-

sented as a = 〈a〉+ a′′+ a′.

2. LES MODEL AND SIMULATED CASES

In this study, the parallelized large-eddy simula-

tion model PALM (Raasch and Schröter, 2001;

Riechelmann et al., 2012) is applied. Using the fi-

nite difference technique, the model solves the filtered,

non-hydrostatic Navier-Stokes equations in the Boussi-

nesq approximation and the filtered transport equations



Figure 1: Vertical profiles of potential temperature θ (a), specific humidity qv (b), vertical flux WT of the liquid water

potential temperature (c), and vertical flux WQ of the total water specific humidity (d) for the BOMEX case. Black

lines show profiles averaged over all models participating in the BOMEX LES intercomparison study, and the grey

shading shows twice the standard deviation for the model ensemble (see Siebesma et al., 2003, for details). Red lines

show the PALM output. Profiles of θ and qv are obtained by means of averaging over one hour of simulations, and

profiles of WT and WQ are the result of averaging over three hours.

for two quasi-conservative thermodynamic variables,

viz., the liquid water potential temperature and the

total water specific humidity. The filtering of the

governing equations is carried out implicitly, following

the volume-balance approach (Schumann, 1975). The

incompressibility of the flow is ensured by solving a

Poisson equation for the perturbation pressure, using a

predictor-corrector method and a fast Fourier transform.

The sub-grid scale (SGS) closure model is based on

Deardorff (1980), where the SGS fluxes of momentum

and scalars are determined through the down-gradient

approximation and a prognostic equation for the SGS

TKE is carried to determine the SGS eddy diffusivity.

The resolved-scale liquid water content ql is calculated

by means of a simple saturation adjustment scheme

based on Cuijpers and Duynkerke (1993), where a grid

volume is regarded as cloudy when the total water

content is larger than the saturation specific humidity

(all-or-nothing method that does not account for the

fractional cloud cover at sub-grid scales). Advection of

velocity and scalars is computed by a fifth-order scheme

based on Wicker and Skamarock (2002). A third-order

Runge-Kutta scheme with a variable time step is used

for time advance.

The set-up of our simulations is based on two

GEWEX Cloud System Study LES test cases. These

are (i) the shallow trade-wind cumulus case BOMEX

(Siebesma et al., 2003) and (ii) the nocturnal stra-

tocumulus case DYCOMS-II (RF01) (Stevens et al.,

2005). The major difference between our simulations

and the BOMEX and DYCOMS simulations is in the

grid spacing. As compared to a rather coarse standard

resolution of BOMEX (with the mesh size of 100 m,

100 m and 40 m in x, y and z direction, respectively)

and DYCOMS (mesh size of 100 m, 100 m and 40 m),

a much finer resolution with a mesh size of 5 m in all

directions is used in the present study. Furthermore,

the horizontal domain size for the DYCOMS case is

nearly doubled to become 6.4 km × 6.4 km which is the

same as for the BOMEX case. Among other things, a

larger domain yields improved estimates of turbulence

moments computed on the basis of LES model output.

Vertical profiles of mean scalar fields and of the

vertical scalar fluxes computed by PALM are com-

pared with available LES data from the BOMEX and

DYCOMS studies. In Figs. 1 and 2 (all figures are

produced with NCL, 2012), WT =
〈

w′′θ′′l

〉

+ 〈τθ3〉 and

WQ = 〈w′′q′′〉+
〈

τq3

〉

represent total (i.e. resolved +

sub-grid) vertical scalar fluxes. The SGS fluxes of liquid

water potential temperature and total water specific

humidity, τθ3 and τq3, respectively, are computed

by the SGS model. A three-layer structure of the

BOMEX boundary layer with a well-mixed subcloud

layer at z < 500m, a conditional unstable layer at

500m ≤ z ≤ 1500m and an inversion at z > 1500m is

clearly seen in Figs. 1a and 1b. The profiles of WT and

WQ computed by PALM are very close to the ensemble-

mean profiles from the BOMEX study, see Figs. 1c and

1d. The PALM profiles plotted in Fig. 2 are in good

agreement with the DYCOMS data. PALM simulates

a well-mixed boundary layer that shows no discernible

tendency of decoupling, as opposed to several members

of the DYCOMS ensemble (see Stevens et al., 2005).

PALM produces some overshooting at the top of the

cloud layer. This can be attributed to the use of a non-

monotonic advection scheme that has trouble handling
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Figure 2: Vertical profiles of liquid water potential temperature θl (a), total water specific humidity q (b), vertical flux

WT of the liquid water potential temperature (c), and vertical flux WQ of the total water specific humidity (d) for the

DYCOMS case. Profiles are obtained by means of averaging over two hours of simulations. Black lines show the

ensemble-mean from the DYCOMS model intercomparison study. The light grey shading shows the full range of the

ensemble data, and the dark grey shading shows the interquartile range (see Stevens et al., 2005, for details). Red lines

show the PALM output.

large scalar gradients. Some models from the DYCOMS

ensemble reveal similar behavior with respect to the

overshooting (Stevens et al., 2005).

3. SCALAR FLUX BUDGETS

Since most turbulence closure models are formulated in

terms of ensemble-mean quantities, the ensemble-mean

second-moment budgets should be obtained from the

three-dimensional LES fields. Approximations to the

ensemble-mean budgets are obtained by averaging the

LES data horizontally, and the resulting profiles are then

averaged over several thousand time steps. The sampling

for BOMEX and DYCOMS cases is over the last three

and two hours of the simulations, respectively.

In order to keep the residuals in the flux bud-

gets as small as possible, the SGS contributions to

the budgets should be accounted for. These contri-

butions are estimated on the basis of the SGS flux-

budget equations as described in e.g. Mironov (2001) and

Mironov and Sullivan (2010) (but with some modifica-

tions to account for the presence of clouds). The total

(resolved + sub-grid) budget of the vertical flux of scalar

s is

∂

∂t

(〈

u′′3s′′
〉

+ 〈τs3〉
)

=−
(〈

u′′23

〉

+ 〈τ33〉
) ∂〈s〉

∂x3

+
g

θ0

(〈

s′′θ
′′
v

〉

+ 〈τvs〉
)

−
∂

∂x3

[〈

u′′23 s′′
〉

+ 2
〈

u′′3τ′′s3

〉

+
〈

s′′τ′′33

〉

+ 〈T3s3〉
]

−
1

ρ0

(〈

s′′
∂p′′

∂x3

〉

+ 〈Ps3〉

)

.

(1)

Here, τs3 = u′3s′ is the vertical SGS scalar flux, and

τ33 = u′23 is the component of the SGS Reynolds-stress

tensor. Both quantities are computed by the SGS model.

All correlations incorporating virtual potential tempera-

ture, such as τvs = s′θ′v and u′3θ′v, are expressed in terms

of the quasi-conservative quantities θl and q. The SGS

virtual potential temperature-scalar covariance τvs = s′θ′v
is not computed by the SGS model. It is estimated on

the basis of truncated SGS scalar-variance budgets, as-

suming a steady-state balance between mean-gradient

production and dissipation of the SGS scalar variances.

The SGS triple correlation T3s3 = u′23 s′ cannot be de-

termined with our LES model and is therefore incorpo-

rated into the residual. The SGS contribution to the pres-

sure gradient-scalar covariance, Ps3 = s′∂p′/∂x3, is esti-

mated on the basis of a truncated SGS scalar-flux bud-

get, assuming a balance between mean-gradient produc-

tion, buoyancy and Coriolis terms at the sub-grid scales

(Mironov, 2001). Khanna (1998) and Mironov et al.

(2000) showed that Ps3 should be accounted for in the

scalar-flux budget to obtain a small residual.

The term on the left-hand side of Eq. (1) is the ten-

dency due to nonstationarity. The terms on the right-

hand side of Eq. (1) are due to the mean-gradient produc-

tion/destruction G, buoyant effects B, turbulent transport

Tr, and pressure gradient-scalar covariance Pr. Because

of the presence of horizontally inhomogeneous radiative

forcing in the DYCOMS stratocumulus-topped boundary

layer case, an additional term appears in the budget of the

liquid water potential temperature flux. It reads
〈

w′′Q
′′
r

〉

,

where Qr denotes the temperature tendency due to the

radiative cooling/heating. The term
〈

w′′Q
′′
r

〉

is different
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Figure 3: Budget of the vertical flux WT of the liquid water potential temperature for BOMEX (a) and DYCOMS (b).

The plotted budget terms represent the effects of mean-temperature gradient G, buoyancy B, turbulent transport Tr, and

pressure gradient-temperature covariance Pr, and R is the budget residual. The budget terms are averaged over three

hours for BOMEX and over two hours for DYCOMS. The grey shading indicates the cloud layer. Note that a different

abscissa scale is used for the upper panels.

from zero only within the cloud layer. It appears to be

very small and is not shown in Fig. 3b. The time-mean

of Eq. (1) is treated as an approximation to the ensemble-

mean budget of the vertical scalar flux (as described in

the first paragraph of the present section).

The budgets of the vertical flux of the liquid water

potential temperature for BOMEX and DYCOMS are

shown in Fig. 3. Since all terms in the dry mixed layer

and in the lower part of the cloud layer are rather small

in comparison to the upper part of the cloud layer, differ-

ent scales are used for the abscissa. The mean-gradient

term G changes sign where the mean-gradient changes

sign. The buoyancy term B is positive throughout most

of the boundary layer and acts as a source for the flux.

The turbulent transport term Tr redistributes the flux in

the vertical direction. It is relatively small in both cases.

Another important term in the budget is the pressure

gradient-scalar covariance Pr. Together with the mean-

gradient term, it essentially balances the buoyant flux

production. In the DYCOMS case, Fig. 3b, the pres-

sure gradient-scalar covariance and the buoyancy term

are almost mirror images as was already observed by e.g.

Moeng (1986).

A comparison of Fig. 3a and Fig. 3b suggests that

the main difference between the BOMEX and DYCOMS

flux budgets lies in the relative importance of the mean-

gradient and pressure terms near the top of the cloud

layer. In the cumulus regime (Fig. 3a), G and Pr are al-

most equally important near the cloud top. In the stra-

tocumulus regime (Fig. 3b), the relative importance of

the pressure term is much higher. Near the cloud top, the

stratocumulus temperature-flux budget is strongly domi-

nated by the buoyancy and pressure terms. In both simu-

lated cases, the residual R, which is defined as the sum of

all budget terms, is very small over most of the bound-

ary layer except in the near vicinity of the surface. A

small residual is likely due to high resolution of our sim-

ulations and due to the inclusion of the SGS contribu-

tions into the total scalar-flux budgets. Notice, however,

that in DYCOMS the residual near the cloud top is of the

same order of magnitude as the mean-gradient term and

is not entirely negligible. This suggests that the model

has some problems with very large scalar gradients in

the interfacial layer.
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4. PRESSURE-SCALAR COVARIANCE

4.1 Decomposition

In second-order turbulence modeling, the standard ap-

proach to treat the pressure gradient-scalar covariance

is to decompose it into contributions due to non-linear

turbulence-turbulence interactions (T), mean velocity

shear (S), buoyancy (B), and the Coriolis effects (C)

and to model these contributions separately (e.g. Zeman,

1981). Applying this decomposition to the resolved-

scale part of the covariance Πsi = ρ−1
0 〈s′′∂p′′/∂xi〉 yields

Πsi = ΠT
si +ΠS

si +ΠB
si+ΠC

si +ΠSG
si . (2)

Notice that, as different from the ensemble-mean model-

ing framework, an additional contribution due to the SGS

Reynolds stress (SG) should be considered in the LES

(see Mironov, 2001, for details). The components of Πsi

are determined by using the corresponding contributions

to the fluctuating pressure,

p′′ = p′′T + p′′S + p′′B + p′′C + p′′SG, (3)

which in turn are determined from the following set of

Poisson equations:

1

ρ0

∂2 p′′T

∂x2
i

=−
∂2

∂xi∂x j

(

u′′i u′′j −
〈

u′′i u′′j
〉)

, (4)

1

ρ0

∂2 p′′S

∂x2
i

=−2
∂u′′j

∂xi

∂〈ui〉

∂x j

, (5)

1

ρ0

∂2 p′′B

∂x2
i

=
g

θ0

∂θ
′′
v

∂x3
, (6)

1

ρ0

∂2 p′′C

∂x2
i

=−εi jk f j

∂u′′k
∂xi

, (7)

1

ρ0

∂2 p′′SG

∂x2
i

=−
∂2

∂xi∂x j

u′iu
′
j

′′
. (8)

These Poisson equations are derived by taking the di-

vergence of the LES momentum equation, subtracting

from the resulting equation its horizontal mean (in or-

der to obtain the equation for the deviation of pressure

from its horizontal mean, p′′), and considering the var-

ious processes, contributing to the fluctuating pressure,

separately. The pressure components obey Neumann

boundary conditions at the bottom of the model domain

and Dirichlet conditions at the top of the domain. This

is different from Moeng and Wyngaard (1986) who used

Neumann boundary conditions at the domain top. Sensi-

tivity tests (results are not shown) indicate that the pres-

sure components and the turbulence statistics are very

little affected by the type of the upper boundary condi-

tions. Notice that the above decomposition of the fluc-

tuating pressure, Eq. (3), is linear so that the total fluc-

tuating pressure should be equal (basically, to a machine

precision) to the sum of its components determined from

Eqs. (4)-(8). This is indeed the case in our computations.

Figure 4 shows various contributions to Πq3 and the

sum of the contributions for BOMEX and DYCOMS.

The negative of Πq3 is plotted as it appears in the flux-

budget equation (1). In the lower part of the cloud layer

and in the dry sub-cloud layer, i.e. at z < 1400m for

BOMEX and at z < 700m for DYCOMS, the buoyancy

B and the turbulence-turbulence T contributions are of

the same order of magnitude and are roughly equally

important. Near the top of the cloud layer, the buoy-

ancy contribution B becomes increasingly important and

dominates the total pressure gradient-humidity covari-

ance. The shear contribution S is only significant near

the surface in both simulated cases, whereas the Coriolis

contribution (C, not shown) is two orders of magnitude

smaller than other contributions and can safely be ne-

glected. The contribution SG due to SGS stress is small,

confirming the fidelity of our LES results. The analy-

sis of the covariance of the vertical pressure gradient and

the liquid water potential temperature, Πθ3, yields sim-

ilar results as for the relative importance of the various

contributions (not shown). For both q and θl, the pressure

gradient-scalar covariance is dominated by buoyancy and

turbulence-turbulence effects.

4.2 Testing parameterizations of the pressure-scalar

covariance against LES data

As the contributions to the pressure gradient-scalar co-

variance due to buoyancy B and turbulence-turbulence

interactions T are the most important ones for our cloudy

boundary-layer cases (Fig. 4), some commonly used pa-

rameterizations for these contributions are tested against

LES data.

4.2.1 Buoyancy contribution to Πsi

A simple parameterization for the buoyancy contribu-

tion ΠB
si to the pressure gradient-scalar covariance that

is commonly used in applications reads

ΠB
si = cB

g

θ0
δi3

(〈

s′′θ
′′
v

〉

+ 〈τvs〉
)

. (9)

Note that Eq. (9) is linear in the second-order mo-

ments. It sets ΠB
si proportional to the buoyancy term

in the scalar flux budget Eq. (1). Therefore, it simply

compensates a part of the buoyancy production of the

scalar flux. A theoretical value of dimensionless con-

stant cB that stems from isotropic tensor modeling (see

e.g. Lumely, 1978; Zeman, 1981; Hanjalić and Launder,

2011) is 1/3. Moeng and Wyngaard (1986) found, how-

ever, that a value of cB = 0.5 is more consistent with the

data from LES of slightly sheared convective boundary
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Figure 4: Contributions to the covariance of the vertical pressure gradient and the total water specific humidity, Πq3,

due to buoyancy B, turbulence-turbulence interactions T, mean velocity shear S, and SGS stress SG for BOMEX (a)

and DYCOMS (b). Black solid lines show the sum of the various contributions. Notice that the turbulence-turbulence

contribution does not include the SGS part Pq3 = q′∂p′/∂x3 (see Eq. (1) and section 4.2.2). The averaging time is three

hours for BOMEX and two hours for DYCOMS.

layer.

Figure 5 compares ΠB
q3 from the LES data with its

parameterization through Eq. (9). Apart from the esti-

mates of cB = 1/3 and cB = 0.5, we have used the best-

fit value of cB obtained with the least-squares method.

The fitting is applied over the middle part of the bound-

ary layer, at 100m < z < 2000m for BOMEX and at

100m < z < 800m for DYCOMS, excluding the near-

surface layer and the interfacial layer. For both cumu-

lus and stratocumulus boundary layers, the LES data and

the parameterization agree quite well. The shape of the

ΠB
q3 profile is captured well by Eq. (9). There is some

underestimation of the LES data, particularly near the

cloud top. The best-fit values of cB are 0.51 and 0.49 for

BOMEX and DYCOMS, respectively, that is the same

as cB = 0.5 found by Moeng and Wyngaard (1986). A

consideration of the buoyancy contribution to the verti-

cal pressure gradient-temperature covariance, ΠB
θ3, also

indicates a good performance of Eq. (9). The best-fit es-

timates of cB are found to be 0.46 and 0.45 for BOMEX

and DYCOMS, respectively. Our analysis of ΠB
s3 sug-

gests that a linear parameterization (9) with cB = 0.5 can

be recommended for use in cloudy boundary layer mod-

eling.

It is worthy of note, however, that Eq. (9) yields a non-

zero value for the vertical component ΠB
s3 of ΠB

si (aligned

with the vector of gravity). A linear parameterization (9)

is unable to account for the horizontal components (i = 1

or i = 2) of ΠB
si. This is at variance with our LES data

(not shown) indicating that ΠB
s1 and ΠB

s2 are important

contributions to the pressure gradient-scalar covariances

(along with the turbulence-turbulence contributions) and

should be taken into account. To this end, more sophis-

ticated models of ΠB
si are required, e.g. a nonlinear two-

component-limit model of Craft et al. (1996).

4.2.2 Turbulence-turbulence contribution to Πsi

A Rotta-type (Rotta, 1951) relaxation (return-to-

isotropy) parameterization is commonly used for

the turbulence-turbulence contribution to the pressure

gradient-scalar covariance. It reads (e.g. Zeman, 1981)

ΠT
si =

cT

τ

(〈

u′′i s′′
〉

)+ 〈τsi〉
)

, (10)

where cT is a dimensionless constant, and τ is a relax-

ation “return-to-isotropy” time-scale for a scalar quantity

s. The time-scale τ is often set proportional to the TKE

dissipation time-scale τε = TKE/ε, where ε is the TKE

dissipation rate. According to Zeman (1981), the values
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Figure 5: Buoyancy contribution of the covariance of the vertical pressure gradient and the total water specific hu-

midity, ΠB
q3, for BOMEX (a) and DYCOMS (b). Black lines show ΠB

q3 from the LES data. Red lines show the linear

parameterization, Eq. (9), with cB = 0.5, and blue lines show the linear parameterization with the best-fit value of cB

based on a least-squares method. The averaging time is three hours for BOMEX and two hours for DYCOMS.

of cT lie between 3 and 5. For dry convective boundary

layers, an estimate of cT = 3.0 was obtained on the basis

of LES data (Mironov, 2001).

In Fig. 6, the turbulence-turbulence contribution ΠT
θ3

from LES is compared with its parameterization through

Eq. (10). The TKE 〈e〉 = 1
2

〈

u′′2i + u′2i

〉

is estimated

with due regard for the SGS contribution, and the TKE

dissipation rate 〈ε〉 is estimated as a residual of the

total (resolved + sub-grid) TKE budget. Following

Mironov (2001), the SGS contribution to the pressure

gradient-scalar covariance, Ps3 (see section 3.), is added

to the turbulence-turbulence part of the resolved pressure

gradient-scalar covariance. In the remainder of this sec-

tion, ΠT
si denotes the sum of the resolved and SGS con-

tributions.

The Rotta-type parameterization of ΠT
θ3 agrees sat-

isfactorily with the LES data over most of the bound-

ary layer except near the cloud top, where Eq. (10) un-

derestimates data. The shape of the ΠT
θ3 profile is not

reproduced accurately enough. For example, the local

maximum at cloud base in the BOMEX case and the

maxima near the cloud top in both cases are not caught.

The best-fit values of cT (obtained with the least-squares

method) proved to be 4.16 and 3.19 for BOMEX and DY-

COMS, respectively. These values lie within the range

3 ≤ cT ≤ 5 reported by Zeman (1981). For the horizontal

components of the pressure gradient-temperature covari-

ance (not shown), the best-fit estimates of cT appeared

to vary quite significantly. For ΠT
θ1, the best-fit values

of cT are 1.69 for BOMEX and 3.83 for DYCOMS, and

for ΠT
θ2, the values are 1.51 for BOMEX and 2.34 for

DYCOMS. For ΠT
qi, similar results are obtained, indi-

cating that no universal best-fit estimate of the dimen-

sionless constant cT can be found that is valid for both

types of cloudy boundary layers and for all spatial direc-

tions. This suggests that the Rotta-type parameterization

of the turbulence-turbulence contribution to the pressure-

gradient scalar covariance is somewhat oversimplified. A

more elaborate parameterization will hopefully do a bet-

ter job.

5. CONCLUSIONS

Large-eddy simulations of shallow cumulus-topped and

stratocumulus-topped boundary layer flows are used to

compute various statistical moments of fluctuating fields

of velocity and scalar quantities (liquid water potential

temperature and total water specific humidity) and to es-

timate terms in the budget equations for the scalar fluxes.

In order to close the flux budgets to a good order, SGS
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Figure 6: Turbulence-turbulence contribution of the covariance of the vertical pressure gradient and the liquid water

potential temperature, ΠT
θ3 for BOMEX (a) and DYCOMS (b). Black lines show ΠT

θ3 from the LES data. Red lines

show the Rotta-type return-to-isotropy parameterization, Eq. (10), with cT = 3.0, and blue lines show the return-to-

isotropy parameterization but with the best-fit value for cT based on a least-squares method. The averaging time is

three hours for BOMEX and two hours for DYCOMS.

contributions to various budget terms are taken into ac-

count. The pressure scrambling terms in the flux budgets

(i.e. the pressure gradient-scalar covariances) are decom-

posed into contributions due to turbulence-turbulence in-

teractions, buoyancy, mean velocity shear, and Coriolis

effects, and the performance of some commonly used

parameterizations for the pressure terms is tested against

LES data.

In cloudy boundary layers, the scalar-flux budgets are

found to be dominated by the buoyancy, the mean-scalar-

gradient, and the pressure-scrambling terms. The pres-

sure gradient-scalar covariances are mainly determined

by the buoyancy and the turbulence-turbulence contribu-

tions, whereas the shear contribution is only significant

near the surface. A simple linear parameterization for

the buoyancy contribution to the pressure gradient-scalar

covariance shows a good performance. The Rotta-type

relaxation parameterization of the turbulence-turbulence

contribution performs less satisfactorily. It strongly

underestimates LES data near the cloud top and has

some trouble reproducing the shape of the vertical pro-

file of the turbulence-turbulence contributions. To im-

prove the quality of cloudy boundary layer turbulence

modeling, more sophisticated parameterizations are re-

quired. For example, a two-component-limit formula-

tion of Craft et al. (1996) showed promising results for

dry convective boundary layers (Mironov, 2001). Com-

prehensive testing for cloudy boundary layers is still to

be performed.
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