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Abstract

A modeling framework is developed which extends
the mixed layer model to cloudy convection, closed
using linearity of fluxes throughout the boundary
layer. The presented framework allows for the eval-
uation of equilibrium states on the basis of the cur-
rent environmental conditions. This equilibrium state
is largely independent of the initial conditions, and
therefore presents an asymptotic tendency which
might help deepen our understanding of the bound-
ary layer dynamics. Using the profile of the buoy-
ancy flux, cloudless, coupled and decoupled regimes
can be distinguished a priori. These predictions are
tested by comparison to a large number of indepen-
dent Large-Eddy Simulations, and are found to be in
good agreement with the simulation results.

1. INTRODUCTION

Boundary layer clouds play an important role in both the
dynamical and radiative properties of the boundary layer,
controlling to an important extent the height, the efficiency
of vertical transport and the transparency of the bound-
ary layer. However, these clouds are also notoriously
hard to model due to the high resolution needed to re-
solve boundary layer turbulence. Stratocumulus cloud
decks require high vertical resolution to resolve cloud-top
entrainment, and properties of cumulus clouds are also
sensitive to horizontal grid resolution due to their inhomo-
geneity.

Understanding of cumulus clouds has increased sig-
nificantly over the past decades, in part due to Large
Eddy Simulations (LES, e.g. Deardorff, 1970), which al-
lowed many numerical studies to be performed on de-
tailed cloud processes. Especially understanding the
cloud-environment interactions (Heus and Jonker, 2008;
Paluch, 1979; Reuter and Yau, 1987; Siebesma and Holt-
slag, 1996) has been a popular topic over many years,
enhancing our understanding of cumulus clouds and im-
proving parameterizations. However, the behavior of the
cumulus-capped boundary layer as a whole and the inter-
play with large scale tendencies and forcings is still poorly
understood. This is further emphasized by studies on
the wide spread of cloud-climate feedbacks (Bony et al.,
2006; Dufresne and Bony, 2008), revealing the large un-
certainties associated with the feedback behavior of low
clouds.
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For this reason, this work attempts a very simple
modeling approach, regarding the boundary layer as a
simple dynamical system. Starting with the mixed layer
model for clear convective situations, building on the work
of Lilly (1968); Tennekes (1973) and, more recently, van
Driel and Jonker (2011); Vilà-Guerau de Arellano et al.
(2004), the model is further elaborated to include a cloud
layer, working in the line of Stevens (2006), Neggers
et al. (2006) and Stevens (2007). The goal of this ex-
ercise is to set up a framework in which one can study
the response of cumuliform clouds to large-scale atmo-
spheric forcings and surface properties, minimizing com-
plications by eliminating as many competing complexities
as possible. Note that in doing this, a somewhat dif-
ferent approach is chosen than in detailed bulk studies
like, for example, Bretherton and Park (2008) and Nui-
jens and Stevens (2011), which propose more realistic
models which focus on the dynamical temporal response
of the cloud layer, where we focus on the equilibrium so-
lutions.

2. BULK MODELING

In order to keep our model as simple as possible, this
work will consider a non-advective boundary layer, i.e.
u = v = 0 , with horizontally homogeneous turbulent
fluxes and sources. In these conditions, the conserva-
tion equation for an arbitrary scalar ψ becomes a one-
dimensional equation:

∂ψ

∂t
+ w

∂ψ

∂z
= −∂w

′ψ′

∂z
+ Sψ (1)

where incompressibility is assumed. This equation is the
starting point for many (mixed-layer) models of the tur-
bulent boundary layer. Note that not all assumptions are
strictly necessary: an equivalent equation can be found
for an advective case with nonzero geostrophic wind in
Stevens (2006).

2.1 General bulk modeling

A bulk model is found when the height dependence in
equation (1) is integrated out. For this purpose, we follow
the notation of Stevens (2006) and define the bulk aver-
age

ψ̂ =
1

h+

∫ h+

0

ψ dz (2)

with h the height of the boundary layer. Hence, ψ̂ is the
boundary layer average value of ψ. Integration is per-
formed from 0 to h+ where h+ = limε→0 h + ε to include
the possibility of a discontinuity at the boundary layer top.
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For simplicity, we assume a constant vertical velocity
profile which we denote by the subsidence velocity de-
fined downward: w = −ws, and constant sources. Note
that the derivation is also possible for a case of constant
(or even generalized) divergence (w = −Dz) and non-
constant sources, as is shown in the appendix. For now,
the integration of equation (1) yields the following equa-
tion

h
∂ψ̂

∂t
− ∂h
∂t

(ψ+−ψ̂)−ws(ψ+−ψ0) = w′ψ′0−w′ψ′++hSψ

(3)
where the subscript denotes the location at which an ex-
pression is evaluated, + denoting the height z = h+, and
0 denoting the atmospheric level just above the surface.

In a typical mixed-layer approach, the homogeneity
of ψ in the boundary layer ensures that ψ̂ = ψ0. One
of the problems in modeling cumulus is that the cloud
layer becomes conditionally stable, and therefore ψ is not
height-independent in the boundary layer, causing ψ̂ to
become another unknown. However, in equilibrium we
require ∂h

∂t
= 0, such that this problem resolves itself.

2.2 Bulk conservation equations

As the sub-cloud layer is typically well-mixed, write ψ0 =
ψm, the sub-cloud layer value. The entrainment velocity
is

we =
∂h

∂t
+ ws (4)

Also, a quasi-steady state implies

∂

∂z

∂ψ

∂t
= 0 and hence

∂ψ̂

∂t
=
∂ψm
∂t

(5)

Utilizing these relationships and using the notation

∆ψ = ψ+ − ψm (6)

equations (3) and (4) can be used to construct an equi-
librium bulk model for the thermodynamic boundary layer
state as follows (ψm = {θl, qt}):

∂h

∂t
= 0 = we − ws, (7)

∂θl
∂t

= 0 =
we∆θl + w′θ′l0

h
+ Sθl , and (8)

∂qt
∂t

= 0 =
we∆qt + w′q′t0

h
+ Sq, (9)

where θl and qt denote the sub-cloud layer values of the
liquid water potential temperature and total water content,
respectively. Equations (7) to (9) form the basis for often-
used boundary layer models (Lilly, 1968; van Driel and
Jonker, 2011), mostly in the case of homogeneous, i.e.
clear or stratocumulus, boundary layers. In equilibrium at
least, these equations are just as valid for the cumulus
capped boundary layer. This is because the assumption
of quasi-steadiness is enough to arrive at equations (7-9),
making the assumption of a ’well-mixed’ layer obsolete.

Therefore, these equations are applicable to the av-
erage state of the cumulus capped boundary layer as

well. In part, though, this merely shifts the complexity into
finding an entrainment formulation for we which is valid in
a cumulus capped boundary layer.

2.3 Closure: entrainment formulation

Given the forcings (i.e. fluxes and sources), equations (7)
to (9) are closed if a parameterization forwe can be found.
For this, we follow the approach of Stevens (2007) and
use the assumption of quasi-steadiness of the boundary
layer. In order to exploit this, consider what is sometimes
called the ’dry virtual potential temperature’ (Lewellen and
Lewellen, 2002):

θvd = θl + εIθqt (10)

with εI = Rd
Rv
− 1. In the absence of liquid water, θvd

is equal to the virtual potential temperature. As the tem-
perature dependence in the second term is typically neg-
ligible, hereafter the dry virtual potential temperature is
approximated as a linear relation combination of θl and
qt, i.e. ε̃I ≡ εIθ ≈ constant.

In this approximation, the use of θvd has two advan-
tages. First, its turbulent flux

w′θ′vd(z) = w′θ′l(z) + ε̃Iw′q′t(z) (11)

reduces to the virtual potential temperature flux in the
sub-cloud layer. The profile of the sub-cloud layer vir-
tual potential temperature flux is often assumed to be-
have analogous to that of the clear boundary layer, such
that the top flux relates to the surface flux with a certain
efficiency κ (Ball, 1960; Betts, 1973), i.e.

w′θ′vd(η) = −κw′θ′vd(0) (12)

where η denotes the sub-cloud layer top, and κ has a
value of approximately 0.25.

Secondly, as a linear combination of θl and qt, the ex-
act same conservation equations can be deduced for θvd
as were used for liquid water potential temperature and
humidity. To see this, repeat the bulk analysis performed
above twice, once integrating from z = 0 to z = h+ (re-
peating the result above) and once from 0 to η, now for
ψ = θvd. The resulting equations are, respectively:

∂θvd
∂t

=
we∆θvd + w′θ′vd(0)

h
+ Sθvd and (13)

∂θvd
∂t

=
w′θ′vd(0)− w′θ′vd(η)

η
+ Sθvd (14)

Since quasi-steadiness requires the two time-
derivatives to be equal, the entrainment velocity has to
satisfy

we =
w′θ′vd0

∆θvd

[
(1 + κ)

h

η
− 1

]
for h ≥ η (15)

which follows from combining equations (12) to (14).
When the lifting condensation level exceeds the

boundary layer height, no clouds will form, and therefore
the sub-cloud layer height reduces to the boundary layer
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FIG. 1: Schematic picture of the connection between the ide-
alized ’free atmosphere’, extending from above the
boundary layer all the way up to the ground (dashed
lines), and the actual profile of the atmosphere, with a
boundary layer up to z = h (solid line). The bound-
ary layer is divided into a well-mixed part and a cloudy
part. In this paper, the ’jump’ is considered the differ-
ence between the value above the boundary layer (+)
and the mixed-layer value.

height. In this situation, h+ = η+ and equations (13) and
(14) become identical. For the case of h = η, equation
(15) reduces to:

we = κ
w′θ′vd0

∆θvd
for h = η (16)

which is exactly the entrainment formulation of the well-
known (Lilly, 1968) flux-jump entrainment relation used
for the clear boundary layer. Therefore, equations (7)
to (9) with (15) to (16) extend the clear boundary layer
mixed layer model framework to the cumulus situation.
The model solves for the prognostic variables {h, qt, θl},
driven by the forcings {w′θ′l0, w′q′t0, Sθl , Sq, w

s, ps},
which are assumed known. The surface pressure ps is
used to calculate the saturation curve, needed later.

3. EQUILIBRIUM SOLUTION

In order to investigate the model’s behavior, we need an
environment. To describe this environment in a very sim-
ple yet generic way, we define the free atmospheric pro-
files as the profile the troposphere would have, would
there be no boundary layer (extrapolating downward).
The formation of the boundary layer can alter these pro-
files only up to the boundary layer height h, such that
a top boundary condition is automatically supplied, even
for time-dependent situations. Now consider the following
idealized free atmospheric profiles (dashed lines in Fig. 1)

θfl (z) = θf0
l + Γz and (17)

qft (z) = qf0
t (18)

In the current idealized framework, these profiles can be
kept time-independent by compensating the subsidence
with radiative cooling as Sθl = −wsΓ, and setting Sq = 0.
Note that with the definitions (17,18) of the free atmo-
sphere, the jumps ∆ψ = ψ+ − ψm = ψf (h) − ψm are
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FIG. 2: The threshold of clear and cloudy equilibrium solutions
as a function of surface fluxes for θf0

l = 285 K, qf0
t =

5 g/kg, Γ = 6 K/km and a subsidence of ws = 1 cm/s.
The dashed lines indicate clear boundary layer height,
the solid line is the threshold after which clouds form.

defined by the sub-cloud value and the boundary layer
height h.

A schematic picture of this notion is drawn in figure 1,
illustrating how this idealized free-atmosphere is defined
in relation to the sub-cloud atmospheric value. Figure
1 illustrates how this definition provides a top boundary
condition, as it defines the ψ+ as a function of bound-
ary layer height. Note that although the profiles of θl and
qt are drawn with a conditionally stable cloud-layer lapse
rate, these lapse rates are not prognostically needed for
the model dynamics.

This allows equations (7–9) to be solved for the equi-
librium case as follows,

θ∞l = θf0
l +

w′θ′l0
ws

and (19)

q∞t = qf0
t +

w′q′t0
ws

(20)

where the superscript∞ denotes the equilibrium (t→∞)
value. The current framework thus allows a simple ana-
lytical solution for the sub-cloud layer values, even though
the behavior in the cloud layer is unsolved for. Note
that these values are valid in both cloudless and cumu-
lus regimes.

We stress the importance of equation (7), from which
it becomes apparent that we = ws in steady state, inde-
pendent of the closure or case. This causes equations
(19–20) to be valid always, regardless of entrainment for-
mulation.

3.1 Cloudy threshold

The third variable for which an equilibrium solution can be
solved is η, as can be directly deducted from combining
equations (12) and (14):

η∞ = −
w′θ′vd0

(1 + κ)

Sθvd

(21)



(where in the present case Sθvd = −wsΓ). In cloud-
less situations, h = η and the above equilibrium solu-
tion reduces to the equilibrium mixed-layer solution for the
clear boundary layer with constant subsidence, as stud-
ied by van Driel and Jonker (2011). They showed that this
steady state solution is unique and unconditionally stable.

Equations (19) to (21) define whether or not the forc-
ings support a cloud deck for t → ∞, regardless of the
current boundary layer state. This follows from the fact
that θ∞l and q∞t , together with ps, unambiguously define
the equilibrium lifting condensation level L∞:

L∞ = f(θ∞l , q
∞
t , ps) (22)

by solving for the height at which qsat(θ∞l , ps) = q∞t .
It is important to note that, in this work, the sub-cloud

layer height η is distinguished from the lifting condensa-
tion level L, even in the case of a cumulus layer. This is
because, in contrast to typical bulk models, they do not
necessarily have to equal, at least not in the equilibrium
sense. In fact, the equilibrium lifting condensation level
following from θ∞l and q∞t as given by equations (19–20)
is generally not equal to η∞ as given by equation (21),
i.e. L∞ 6= η∞.

Note that discrepancy, and particularly equation (21)
is not a new consideration, but was already noted by Betts
and Ridgway (1989), who recognized its importance for
future work. In this work, we attempt to give a physical
interpretation to how the boundary layer reacts as a func-
tion of η∞ and L∞. Comparison of η∞ and L∞ allows us
to identify different dynamical regimes, which can even
be related to equilibrium cloud types.

To illustrate the behavior of η∞, figure 2 shows a
phase-space of sensible and latent heat surface fluxes,
given some arbitrary values defining the free atmosphere
and subsidence. Note that as η∞ is defined by the buoy-
ancy flux, it feels the sensible heat flux stronger than
the latent heat flux, and therefore the sub-cloud layer
height grows mostly with sensible heat flux. A threshold
is crossed for L∞ < η∞, after which clouds can exists.
Below this threshold, η∞ represents the actual boundary-
layer height in equilibrium.

4. LES CASE DESCRIPTION

In order to be able to better appreciate further results
predicted by the model framework, a number of Large
Eddy Simulations (LES) are performed with equal forc-
ings and conditions. Large Eddy Simulations can be used
to simulate the boundary layer processes in detail, while
the forcings and initial profiles can be arbitrarily set. For
this research, all simulations have been performed us-
ing GALES, the GPU-resident version of the Dutch Atmo-
spheric Large Eddy Simulation (Schalkwijk et al., 2011).
Using GPU acceleration allows the simulations to be per-
formed locally, such that new simulations can be quickly
run with different forcings. Also, the graphical representa-
tion of the present clouds provides rapid feedback on the
current boundary layer state.

All simulations are performed on a domain of 6.4 km
in both horizontal directions and 3.06km in the vertical di-
rection. Grid spacing is 24m in the vertical and 50m in
the horizontal direction. The simulations are performed
with constant prescribed surface fluxes for θl and qt, and
constant and prescribed radiative cooling and subsidence
profiles. No geostrophic wind is present, in accordance
with the model framework. Parameterized longwave ra-
diative cooling is applied in all simulations, although it is
assumed negligible in the model.

5. CLOUD REGIMES

As explained in section 3, we do not assume η and L
equal in this framework. By treating η∞ and L separately,
we are able to distinguish different dynamical regimes by
considering the buoyancy flux in the sub-cloud layer.

Interesting in this context is that the solution for η∞

(equation 21), follows from dynamical arguments (equa-
tion 14). In contrast, the lifting condensation level is inher-
ently a thermodynamical property of the boundary layer.
Besides being a further argument for the distinction be-
tween η and L, this reasoning can be applied in the model
framework for further interpretation.

Before continuing, we again refer to Betts and Ridg-
way (1989), who, after establishing equation (14), also
noted that the entrainment efficiency κ in the sub-cloud
layer (equation 12) seems to be less of an established
concept in the cumulus case than it is in the case of the
clear boundary layer.

This work proposes that the conflict between thermo-
dynamical and dynamical behavior in the sub-cloud layer
is the cause of variation in κ (and therefore the supposed
uncertainty of equation (12)), For this, we present a very
simple argument combining the dynamical and thermo-
dynamical tendency.

We propose that the dynamical behavior of the vir-
tual potential temperature flux is governed by equation
(12), as quasi-steadiness implies that equation (14) can
be rewritten to:[

∂w′θ′v
∂z

]∞
sub−cloud

= −w
′θ′v0(1 + κ∞)

η∞
(23)

where κ has been replaced by κ∞ to denote it is the κ-
value corresponding to the limiting case of η∞. Note that
the dynamical behavior of the sub-cloud layer now is de-
termined by the entrainment efficiency, as this determines
the slope of the buoyancy flux.

Now, when the lifting condensation level L∞ falls be-
low η∞, clouds form from this level onward, thereby in-
creasing the buoyancy flux due to the liquid water compo-
nent. This causes the minimum buoyancy flux, found just
below the lifting condensation level, to be always smaller
in magnitude than κ∞ w′θ′v0. Figure 3 sketches this ap-
proach in the left panel, but also shows LES evidence on
the right panel, from a case with arbitrary, but constant,
surface fluxes and radiative forcings, started from free at-
mospheric profiles as equations (17) and (18). This is
a single LES case from a large number of similar cases
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FIG. 3: Figure illustrating the dynamics of the buoyancy flux as
it is governed by a combination of the equilibrium sub-
cloud layer height η∞ and the current lifting condensa-
tion level L. On the left, a schematic illustration shows
how the buoyancy flux slope and minimum in the sub-
cloud layer behave, which is complemented by re-
sults from a Large-Eddy Simulation on the right panel.
The LES profiles are results from a growing cumulus
layer case, started in idealized free-atmospheric pro-
files and performed with constant surface fluxes and
sources. Shown are hourly averaged flux profiles at
10h, 20h, 30h, ..., 80h: notice how the slopes overlap
in the lower boundary layer.

which will be described in subsection 5.4 which typically
show similar behavior. Note how the LES profiles change,
including the minimum buoyancy flux, as the lifting con-
densation level varies with time, but how the slope in the
lower part of the boundary layer remains very steady.

We have found κ∞ to be approximately equal to 0.4,
empirically based on the large number of LES cases per-
formed. Note that while this value might seem large, we
emphasize that this value sets the slope of the buoyancy
flux, such that the minimum buoyancy flux is always larger
than −κ∞ w′θ′v0. In fact, if one were to define an effec-
tive entrainment efficiency κeff = −w′θ′v

min
/w′θ′v0, one

would typically find κeff around 0.2. This is illustrated by
figure 3.

As the equilibrium behavior of the buoyancy flux is
thus controlled by an interplay between the lifting con-
densation level L∞ and the sub-cloud layer height η∞ in
equilibrium, we can now identify three different dynami-
cal regimes which show distinctly different behavior in the
virtual potential temperature flux, which can be directly
related to boundary layer behavior.

5.1 Regime I: L∞ > η∞ – Clear layer

In this case, the lifting condensation level lies above the
mixed layer height. This is the simplest regime, depicted
as the region below the solid line in figure 2. The behavior

of which has been described above: no clouds can form,
and a clear boundary layer will develop with a boundary
layer height of h∞ = η∞. The model reduces to the mixed
layer model as studied by van Driel and Jonker (2011).
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FIG. 4: Demonstration of two steady state cumulus cases,
achieved given arbitrary environmental parameters
and forcings. Plotted are 10 hours ( 5th - 15th hours
of simulated time) of hourly averaged liquid water po-
tential temperature, water content and cloud fraction
profiles, in which nearly no time-dependence is seen.
The dashed gray profiles depict a simulation started
with 100m higher initial inversion.

5.2 Regime II: η∞ > (1 + κ∞)L∞ – Coupled layers

Outside of regime I, the lifting condensation level appears
below the mixed layer height and clouds are thus allowed
to form. Careful inspection of figure 3 reveals another
regime division, however. Note that in particular moist
environments, the fraction L∞/η∞ might be such that the
minimum buoyancy flux will not drop below zero:

w′θ′v
min ≥ 0 for

η∞

L∞ ≥ (1 + κ∞) (24)

Observations suggest (de Roode and Duynkerke, 1997)
that the degree of coupling is important in regulating the



amount of moisture transport into the cloud layer. Among
other reasons, this causes the cloud-base (minimum)
buoyancy flux to be considered (Bretherton and Wyant,
1997; Stevens, 2000) an important parameter when con-
sidering the boundary between cumulus and stratocumu-
lus. A negative cloud base buoyancy flux then typically
implies decoupling of the sub-cloud and the cloud-layer,
which is characteristic for a cumulus deck. Therefore, the
value of the negative buoyancy flux allows the separation
of cloud types which will form in the boundary layer.

For this reason, we expect that for the current
regime, where the environment is moist enough to pre-
vent the minimum buoyancy flux to drop below zero, the
equilibrium state will couple with the cloud layer, such that
no equilibrium cumulus layer can form. In fact, it is likely
the layer will tend to stratocumulus in this regime. At that
point, however, the liquid water content will become so
high that long-wave radiative cooling of the cloud layer is
no longer negligible, such that the entrainment formula-
tion of (15) is no longer applicable. A future possibility
might be to couple the entrainment formulation to cur-
rently used stratocumulus entrainment formulations (Mo-
eng, 2000; Nicholls and Turton, 1986), but for now, further
investigation of the coupled layer state remains outside
the scope of this paper.

5.3 Regime III: L∞ < η∞ < (1 + κ)L∞ – Decoupled
layers

The last regime then, is the regime where a negative min-
imum buoyancy flux occurs:

w′θ′v
min ≤ 0 for

η∞

L∞ ≤ (1 + κ) (25)

while still η∞ > L∞ (a negative minimum buoyancy flux
also occurs in the clear boundary layer). This will result
in decoupling between the sub-cloud layer and the cloud-
layer, causing a steady cumulus deck to form for t → ∞.
This regime therefore spans the range for which steady
state cumulus can occur.

The current model framework works much like the
clear boundary layer mixed layer model, but is extended
by regarding the cumulus layer as a large ’entrainment
zone’ (Stevens, 2007). As a result, the model gives little
information on the cloud layer itself. For example, the
model does not provide information on the lapse rates
of temperature and humidity in the cloud layer, nor does it
provide information on cloud cover or liquid water content.
Probably, at least some of these variables can be added
to the model, but at the cost of increased complexity. In
this work, the model is kept as simple as possible to focus
on the behavior of the boundary layer state.

A rather surprising result of the model is that no
unique value is predicted for the equilibrium cloud depth
h∞ in terms of the model parameters. Indeed, the quasi-
equilibrium behavior described in equations (13) and (14)
defines a steady state independent of cloud layer depth;
this implies that the equilibrium cloud layer depth is not
unique and will depend on the initial conditions. A more

mathematical explanation for this fact is found in the ap-
pendix. Do note that this is a result of the assumption of
quasi-equilibrium behavior, and not of the constant subsi-
dence profile, as it can be shown to occur for an arbitrary
subsidence profile.

One of the illustrative possibilities now then, is that
the model provides the opportunity to set-up an idealized
steady state cumulus case for arbitrary forcings. An ex-
ample of such an idealized LES case is shown in figure 4,
where an LES is initialized as a simple mixed layer with
some initial height h > η∞, with θl and qt in the mixed
layer chosen such that equations (19) and (20) are satis-
fied. As this state is very close to the predicted cumulus
steady state, the simulation reaches a steady state in only
five hours of simulated time. Figure 4 shows hourly aver-
aged profiles for the 5th to 15th hour of simulated time.
Note that these profiles nearly perfectly overlap, demon-
strating the steadiness of the case.

To show the non-uniqueness of the equilibrium cloud
depth, a second case was set up in exactly the same
manner, yet with a slightly higher initial inversion. The
results of this case are shown in figure 4 in dashed gray
lines. Note that this case also ends up in exactly the same
equilibrium state in mixed layer temperature and humidity
(even lower cloud fraction) but finds its equilibrium with a
thicker cloud deck than the first case, illustrating our point.

By using such generalized steady state cumulus
cases, further studies could more easily investigate the
influences of the parameters important to describing the
cumulus layer than by using a pre-defined case like
BOMEX (Siebesma et al., 2003, more about this later).
For example, the differences in behavior of steady state
cumulus at sub-cloud temperatures between 290 K and
292 K can be quickly compared.

5.4 Phase-space

In order to illustratively combine the regimes described
above in a phase-space of surface fluxes, we describe
the surface fluxes by the surface heat flux ρcpw′θ′v0 (W
m−2) and the Bowen ratio β

β =
cp
Lv

w′θ′l0
w′q′t0

(26)

with cp the specific heat capacity of water and Lv the la-
tent heat of vaporization. The Bowen ratio describes how
the surface heat flux is divided over latent and sensible
heat. Combined, the total surface heat flux ρcpw′θ′v0 de-
scribes how much energy is brought into the boundary
layer from the surface, and thereby sets η∞. The Bowen
ratio describes how this energy is divided over moisture
and temperature, and thus governs the lifting condensa-
tion level.

The cloud regimes are shown in the surface flux
phasespace in figure 5, which illustrates where the cu-
mulus, stratocumulus and clear boundary layer states are
expected by the model in solid lines. To verify the model
predictions, a number of Large Eddy Simulations are per-
formed, each starting at the idealized free atmospheric
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FIG. 5: Left panel: the cloud type regimes in a phasespace of surface flux strength and composition for θf0
l = 290 K, qf0

t = 8
g/kg, Γ = 6 K/km and ws = 2 cm/s. Solid lines separate the cloud regimes according to the model framework, while the
overlaid symbols each depict the state of an LES simulation after 100 hours of simulated time. Right panel: Time series of
the simulations contained in the dashed rectangle in the left panel, showing how the cloud cover evolves from the idealized
free atmospheric state at t = 0 to the equilibrium state at t = 100h.

state according to equations (17) and (17) with θf0
l = 290

K, qf0
t = 8 g/kg, Γ = 6 K/km and ws = 2 cm/s, thus

without initial boundary layer. We would like to empha-
size that each simulation started from the exact same ini-
tial conditions; only the values of the surface fluxes dif-
fer. The simulations are performed for 100 hours with
constant forcings to allow the simulations to reach equi-
librium. The symbols in figure 5 each represent a sepa-
rate LES simulation, and the type of symbol depicts the
average cloud cover in the last hour of the simulation,
which allows the distinction between cumulus, stratocu-
mulus and clear boundary layers.

It is remarkable how each LES simulation ends in the
predicted state, while each started from the same initial
conditions. The right panel of figure 5 shows the time
series of cloud cover for some selected simulations with
equal surface heat flux. This panel clearly shows how
the cases with large Bowen ratios cannot develop a cloud
cover, the cases with intermediate Bowen ratios develop
a cumulus layer and the cases with low Bowen ratio de-
velop a cumulus layer which then evolves into a stratocu-
mulus layer.

Note that as expected, the model breaks down in the
region of fully coupled layers, as the increase in cloud
fraction increases the effect of radiative cooling to a point
at which this is no longer negligible. Therefore, the region
of ’stratocumulus’ should not be taken too literally, but
rather as the breakdown point of the model. Often, simu-
lations do not converge to a steady state at this point, but
rather keep growing, much alike the behavior witnessed
by Bellon and Stevens (2011). This might be an arte-
fact of the constant subsidence profile, however, which
cannot compensate for increased entrainment as radia-
tive cooling increases. Nevertheless, all LES simulations
performed in this region develop a layer in which the cloud
cover is 100%.

The model thus seems to allow for the prediction of

the equilibrium cumulus regime a priori, irrespective of
initial conditions, which is confirmed by LES results.

6. SEA SURFACE TEMPERATURE

One could argue that the above approach of assuming
constant surface fluxes is rather unrealistic, even in the
equilibrium limit. For one, such an approach neglects
the dynamical feedback which does occur when fluxes
are the result of the difference between the boundary
layer state and the surface properties. An interesting ap-
proach, therefore, is to allow this feedbacks in the fluxes
to occur by allowing some surface-atmosphere interac-
tion. A simplified example of such a system can be found
by writing the surface fluxes as

w′θ′l0 = V (θSST − θl) (27)

w′q′t0 = V (qSsat − qt) (28)

where θSST the sea surface potential temperature and
qSsat the saturation humidity at sea surface temperature.
In this approach, V represents some transfer coefficient,
which is assumed constant at 1 cm/s.

Note that when this surface parameterization is im-
plemented into the equations (7) to (9), the steady state
solutions (19) and (20) are still valid and can be expanded
into

θ∞l =
wsθf0

l + V θSST

ws + V
(29)

q∞t =
wsqf0

t + V qSsat
ws + V

(30)

revealing an interesting combination of surface and top
restraints on the boundary layer. Still assuming θvd a lin-
ear combination of θl and qt, these equilibrium solutions
can be combined with equations (10) to find the equilib-
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FIG. 6: The phase-space cloud regime scan of figure 5 is repeated for the case of constant sea surface temperature, as a function
of temperature and subsidence. Other parameters are set to θf0

l = 280 K, qf0
t = 0 g/kg, Γ = 6 K/km and V = 1 cm/s. Solid

lines separate the cloud regimes based on equilibrium lifting condensation level and subcloud layer height. Symbols denote
the maximum hourly-averaged LES cloud cover.

rium buoyancy flux as follows

w′θ′vd
∞
0

=
wsV

ws + V

(
θvd,SST − θf0

vd

)
(31)

where θvd,SST = θSST+ε̃Iq
S
sat represents the sea surface

’virtual potential temperature’. Combining equation (31)
with equation (21), we can express η∞ as a function of
the sea surface temperature as follows.

η∞ = − wsV

ws + V

(
θvd,SST − θf0

vd

)
(1 + κ∞)

Sθvd

(32)

This completes the steady state solution in the case
of interaction with a constant sea surface, such that the
phase-space of figure 5 can be transformed to a phase-
space of θSST and θf0. Indeed, the phase-space scan of
the previous section can be repeated, now including the
sea surface feedback mechanism.

In order to perform this scan, we simplified the LES
sea surface feedback to behave exactly like prescribed
by equations (27-28). This allows us to focus on the ef-
fects of adding this mechanism, without adding compli-
cated feedbacks like wind velocity feedbacks.

The result is displayed in figure 6. We have chosen
to scan a phase-space of sea surface temperature and
subsidence, as this allowed us to perform all LES simula-
tions, like before, starting from the exact same initial con-
ditions. Only sea surface temperature, subsidence and
radiative forcing (such that always Sθl = −wsΓ) were var-
ied between simulations. The simulations were now run
for 300h to allow the extra feedbacks to settle.

Note that the cloud types are mirrored with respect to
figure 5, as coupling now occurs on the bottom right hand
side, with high sea surface temperature and relatively little
subsidence. This can be understood by realizing the sat-
uration equation is non-linear in such a way that relatively,
the latent heat flux reacts more strongly to an increased
SST than the sensible heat flux does.

Once again, the model is able to provide a surpris-
ingly good outline of the area in the phase-space where
cumulus occurs. This is especially true considering the
model does not take the actual dynamics of the feedbacks
in account. It seems that by considering the equilibrium
solution we can achieve a good feeling of the state the
system strives to dynamically as well.

In the coupling regime, another interesting phe-
nomenon occurs, which is most visible in the right panel
of figure 6. It seems that whereas the coupled regime
was unsteady in figure 5 in the sense that the boundary
layer height never stopped increasing, the coupled state
in this system is unsteady in another sense. In many
cases which tend to couple and form an unbroken cloud
deck, the system suddenly becomes unstable and falls
back to a state of a broken cloud deck or even a cloudless
state. The event seems to be due to the newly introduced
sea surface feedback, as it does not seem to occur in the
cases of constant surface fluxes. This might be an arte-
fact of the simplified case set-up or a real phenomenon.
More simulations, likely incorporating a more realistic ra-
diation scheme, are needed to better appreciate this phe-
nomenon. For now it suffices to note that the decoupled-
coupled regime division seems to mark the end of the
region where ’normal’ cumulus layer evolution occurs. In
order to distinguish the steady cumulus cases with these
unsteady cases, the symbols in figure 6 denote the max-
imum hourly-averaged cloud cover instead of the cloud-
cover of the last simulated hour.

7. INTERCOMPARISON CUMULUS CASES

In order to evaluate the model performance in the context
of other studies, we look specifically to studies focused
on the atmospheric boundary layer, with models and ob-
servations to backup the findings. For this reason, this
section relates the model output to LES model intercom-
parison cases, as these studies provide a wealth of data



and are easily reproduced by our LES model.
Considering that most LES simulations use peri-

odic boundary conditions, no true large-scale advection
is possible. Instead, the effects of large-scale advec-
tion are included in source terms. For this reason, in
the appendix we generalize the model to include for non-
constant, but still horizontally homogeneous, sources, as
well as a more general divergence. This allows the model
to be compared with well-known intercomparison cases,
to evaluate its use in slightly less idealized situations. Do
note that wind shear does, in fact, have effects on the
entrainment relations, not included in the model. These
effects are assumed negligible in this section.

Two well-known intercomparison cumulus cases are
the Barbados Oceanographic Meteorological EXperiment
(BOMEX, Siebesma et al., 2003) and the Rain In Cu-
mulus over the Ocean (RICO, Abel and Shipway, 2007)
cases. Figure 7 shows the phasespaces created using
the generalized model in the appendix, and the spot the
cases are situated in. The region in phasespace where
equilibrium cumulus is expected is shaded in light gray.

The BOMEX case is typically run with constant sur-
face fluxes, and is therefore shown in a phasespace of
surface fluxes. Note that BOMEX was originally designed
as a steady state cumulus case, which is confirmed by
the present model as it situates BOMEX in the cumulus
regime (Fig. 7). This is further confirmation of the model
performance, also in more general cases.

The RICO forcings are a little less obvious to model,
as the RICO case is typically run with a forced sea sur-
face temperature, dependent on wind velocity through
surface drag. Running the original case in LES using
V = CDU10m, the transport coefficient is determined
by a drag coefficient and the wind velocity at 10m, we
have to relate this to the model using a constant V . We
chose a constant V to best represent the surface fluxes
the LES produced. For the RICO case, we found a nu-
merical value of V = 0.8 cm/s. Using this value, the
right panel of figure 7 shows the RICO case in a phase-
space of sea surface temperature and free atmospheric
temperature. Interesting to note is that the RICO case
seems to be found in the model’s coupled regime. The
fact that RICO remains in a cumulus state might actually
be caused by precipitation, which acts as a sink for mois-
ture in the boundary layer. Indeed, simulations have been
found to depend sensitively to microphysics (Abel and
Shipway, 2007). This illustrates the end of the model’s
applicability, of course, although it might be possible to
implement a simple precipitation model.

8. CONCLUSIONS AND OUTLOOK

The developed modeling framework is thus a relatively
easy extension to the well-known mixed layer model for
the convective boundary layer, closed using linearity of
fluxes throughout the boundary layer. Equilibrium states
can be predicted in a phase-space of environmental forc-
ings (i.e. free atmospheric conditions, radiative and sur-
face forcings), requiring little knowledge of initial condi-
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FIG. 7: Intercomparison cases BOMEX (left panel) and RICO
(right panel) shown in their respective phasespace
surroundings.

tions.
The equilibrium cumulus cloud regime can be dis-

tinguished on the basis of the minimum buoyancy flux,
which can be predicted a priori using the model’s equi-
librium solutions. These cloud regimes are well in accor-
dance with LES evidence, and are set by an interplay of
surface and free atmospheric forcings. The equilibrium
cumulus regime is found in between the clear and cou-
pled regimes, sensitively dependent on the ratio between
sensible and latent heat fluxes at the surface, but also
on the state of free atmospheric air above the boundary
layer.

LES cases set-up with the model’s equilibrium solu-
tions as initial conditions remain in steady state, thereby
providing an easy methodology for equilibrium studies.
As an outlook, the model might be used to quickly set up
LES equilibrium studies in any given point in the phase-
space of possible forcings, allowing a detailed study of
cloud characteristics as a function of forcing parameters.
Possible examples include studies of cloud organization
as a function of surface forcings, or further quantification
in lateral cloud entrainment and detrainment in steady
state. The modeling framework presented here can also
be further extended by including, for example, cloud cover
or mass flux in the model dynamics, which might aid in
deepening our understanding of the cloud capped bound-
ary layer.

Besides equilibrium studies, mixed layer modeling
has also shown good performance in time-dependent
cases (e.g. van Driel and Jonker, 2011). For this reason,
future applications in time-dependent cloud phenomena
and regime transitions are in scope, as well, although
these would require further assumptions regarding the
cloud layer conditional lapse rate.

A. LINEAR STABILITY ANALYSIS

The stability of equations (7) to (9) can be most easily
evaluated if the coordinate system is chosen such that it
is easily diagonalized. This is most easily done when we



choose {h, θvd, χ} as the prognostic variables, in which χ
is given as:

χ = θl − εIθqt (33)

such that it is independent of θvd, i.e. ∂χ
∂θvd

= 0. The
system of equations then becomes:

∂h

∂t
= we − ws (34)

∂θvd
∂t

=
w′θ′vd0

(1 + κ)

η
− wsΓ (35)

∂χ

∂t
=

w′χ′0 + we∆χ

h
− wsΓ (36)

(37)

Note that the sources are chosen as before, explained
after equations (19) and (20). In vector form, this system
becomes:

∂−→x
∂t

= F (−→x ) (38)

Which can be linearized around some equilibrium value
−→x =

−→
x∞ (for details see van Driel and Jonker (2011)) as

follows:
∂
−→
x′

∂t
= J

(−→
x∞
)−→
x′ (39)

where
−→
x′ = −→x −

−→
x∞, since

−→
F
(−→
x∞
)

=
−→
0 . Hence, in the

vicinity of the equilibrium state, the behavior of the system
is governed by the Jacobian J evaluated in equilibrium.

The general Jacobian of this system is quite com-
plex and outside the scope of this appendix, but it can be
reduced by taking evaluating it in equilibrium and consid-
ering a special case.

For one, the system of equations should reduce to a
mixed layer model for the clear boundary layer in the case
that η = h and the entrainment is given by equation (16).
Indeed, in this case the equilibrium Jacobian reduces to:

J∞ =


∂we

∂h
∂we

∂θvd
0

−w
′θ′

vd0
(1+κ)

(η∞)2
0 0

∆χ
h

∂we

∂h
∆χ
h

∂we

∂θvd
−w

e

h

 (40)

which has eigenvalues according to:

λ1,2 = −Γ(ws)2

w′θ′vd0

1

2κ

(
1±

√
1− 3κ

1 + κ

)
(41)

λ3 = −w
s

h
(42)

Indeed, eigenvalues λ1,2 are identical to those found by
van Driel and Jonker (2011). Interesting is that adding
moisture to the system of equations adds a third eigen-
value of ws/h, corresponding to a relatively large time
scale of h/ws. Hence, the coupled system of moisture
and liquid water potential temperature seems to have
larger time scales than a system without moisture.

Having shown compatibility with the clear boundary
layer, now consider the cumulus regime where h > η.

In this case, with some algebra, the equilibrium Jacobian
can be written:

J∞ =


0 ∂we

∂θvd

∂we

∂χ

0 −w
′θ′

vd
(1+κ)

(η∞)2
∂η∞

∂θvd
0

0 ∆χ
h

∂we

∂θvd
−w

e

h
+ ∆χ

h
∂we

∂χ

 (43)

From which it is apparent immediately one eigenvalue is
zero, λ1 = 0 with corresponding eigenvector

−→v 1 =

1
0
0

 (44)

which corresponds to boundary layer height. Hence, lin-
ear stability analysis indicates the system is neutrally sta-
ble in h (stable for every h∞ > η∞). While in this case,
higher order terms might invalidate this conclusion, LES
evidence seems to support it (e.g. figure 4). At the least,
the timescales involved in variation in h are much larger
even than those of temperature and humidity, which al-
ready act on timescales on the order of days.

B. GENERALIZING THE MODEL TO INCLUDE
SOURCES AND DIVERGENCE

In the case of more general sources and divergence,
but still in the absence of advection, it can be shown
(Stevens, 2006) that equation (3) can be generalized to:

h
∂ψ̂

∂t
−
(
∂h

∂t
− w+

)
∆ψ = w′ψ′0−w′ψ′+ +h ̂Sψ(z) (45)

where now the source term Sψ(z) is now an arbitrary
function of height, and the vertical velocity w+ at z = h+

has replaced the constant subsidence term. For exam-
ple, in a situation of constant divergence D, we have
w+ = Dh. Note that the same assumptions are used
as in section 2.

Equation (45) is very similar to equation (3), such
that the model equations (7) to (9) can still be used when
replacing Sψ by ̂Sψ(z) and ws by −w+. Although the en-
trainment equation (15) does not remain valid since the
sources in the cloud layer may differ from that of the mixed
layer, the equilibrium equations can easily be reproduced
to become

θ∞l = θf0
l −

w′θ′l0 − w+Γθlh+
∫ h

0
Sθldz

w+
(46)

q∞t = qf0
t −

w′q′t0 − w+Γqth+
∫ h

0
Sqtdz

w+
(47)∫ η∞

0

Sθvddz = −w′θ′vd0
(1 + κ) (48)

Note that equation (48) is an implicit equation for η∞. As
equations (46) and (47) determine L∞, the above set of
equations allows the determination of cloud types as in
figure 5 for general sources and vertical wind profiles.
Following the same strategy as in section 6, equations



(46) to (48) can also be rewritten in the case of constant
sea surface temperature.

Do note however, that these equations are now de-
pendent on h, while it can be shown that even in this
more general framework, there is no unique h∞, i.e. the
equilibrium boundary layer height is an initial-value prob-
lem. Considering the intercomparison cases, this will be
solved by using the current LES given height h. The in-
terpretation, however, is that the supported cloud type
is dependent on cloud thickness, i.e. a case with given
forcings might accommodate an equilibrium stratocumu-
lus deck if the cloud thickness remains within certain lim-
its, but can only accommodate cumulus afterwards. This
seems to be in accordance with observations from, for
example, the ASTEX case (Frisch, 1995).
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