

2015 AOFD

Dynamic Partition on the Stratosphere-Troposphere Exchange (STE) of Air Mass along Isentropic Surface

Huang Yang¹, Gang Chen¹, Qi Tang^{2,3}, Peter Hess³ and David Plummer⁴

¹Earth and Atmospheric Sciences, Cornell University ²Lawrence Livermore National Laboratory ³Biological and Environmental Engineering, Cornell University ⁴Canadian Centre for Climate Modelling and Analysis, Environment Canada

Introduction

Meteosat Second Generation (MSG) satellites (EUMETRAIN)

Air mass RGB loop from 03:00 UTC – 09:00 UTC, 29 Dec. 2012 Blue – moist polar air Green – tropical air Red – dry stratospheric air intrusion (STE)

Introduction

(Hegglin and Shepherd 2009)

Meteosat Second Generation (MSG) satellites (EUMETRAIN)

Air mass RGB loop from 03:00 UTC – 09:00 UTC, 29 Dec. 2012 Blue – moist polar air Green – tropical air Red – dry stratospheric air intrusion (STE)

Introduction

Meteosat Second Generation (MSG) satellites (EUMETRAIN)

Air mass RGB loop from 03:00 UTC – 09:00 UTC, 29 Dec. 2012 Blue – moist polar air Green – tropical air Red – dry stratospheric air intrusion (STE)

Isentropic STE diagnostic

Nakamura, 2007

- diagnosing STE along individual isentropic surface (i.e. isentropic STE, F_{STE})
- a vertical series of isentropic STE approximately represents its meridional distribution

High isentropes <-> Low latitudes

Low isentropes <-> High latitudes

Isentropic STE (colors) w/ zonal wind (contours)

WACCM

Whole Atmosphere Community Climate Model (1991-2009, 19-yr control run) Focus on the **NH**, as SH is similar.

- Troposphere-to-stratosphere (upward) STE on higher isentropes (subtropics), stratosphere-to-troposphere (downward) STE on lower isentropes (extratropics)
- Maximum downward STE occurs on the poleward flank of the tropospheric jet, and moves seasonally with the jet

When and where STE occurs? Processes controlling the STE

What cause this spatial distribution of STE?

Gettelman et al. 2011

What cause this spatial distribution of STE?

Gettelman et al. 2011

What cause this spatial distribution of STE?

Gettelman et al. 2011

Dynamic Partition – PV Sources

$$F_{STE} = -\frac{\partial M(\dot{q})}{\partial q}\Big|_{q=1}$$

STE flux (F_{STE}) across a potential vorticity (PV) tropopause Q is affected by the PV tendency dq/dt.

where $M(\cdot) = \int_{STRATO} \sigma(\cdot) dS$

denotes the air mass weighted integration in the stratosphere

$$\dot{q} = \dot{q}_{\kappa} + \dot{q}_{S}$$
Isentropic Differential
Mixing Diabatic Heating
$$F_{STE} = F_{mix} + F_{dia}$$
residual
component directly
calculated

where
$$F_{dia} = -\frac{\partial M(\dot{q}_{s})}{\partial q}\Big|_{q=Q}$$

and $\dot{q}_{s} = \frac{q}{\sigma} \frac{\partial}{\partial \theta} (\sigma \dot{\theta})$

- σ isentropic density
- heta isentropic temperature
- heta diabatic heating rate

grey shades: underworld, no STE zone contours: zonal winds

- Upward F_{dia} vs. downward F_{mix}
- Large cancellation

grey shades: underworld, no STE zone contours: zonal winds

 F_{dia} < F_{mix}, the net flux F_{STE} displays a similar spatiotemporal pattern as F_{mix}

F_{dia} & diabatic heating

Strong dq_s/dt <-> strong F_{dia}

F_{mix} & isentropic mixing

- Strong mixing <-> strong F_{mix}
- Poleward flank of jet: weak winds, strong mixing, and strong F_{mix}
- Jet core: strong winds, weak mixing, and weak F_{mix}

Consistency in the CMAM

Summary

- Upward F_{dia} vs. downward F_{mix}, yielding downward F_{STE}
 - F_{dia} diabatic heating: positive dq/dt, descending tropopause height
- F_{mix} isentropic mixing: negative dq/dt, ascending tropopause height