Diagnosing eddy diffusivities via one-shot optimization
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Gent-McWilliams parameterization

e Similar calculations for the Gent-McWilliams parameterization (Gent &
McWilliams, 1990, |. Phys. Oceanogr.), where u'b’ = —x,VDb. | is now
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Introduction

Implementation and PV mixing parameterization

o To test parameterizations, one often takes a forward modeling approach,
comparing the statistics generated from low-resolution simulation (with
parameterization scheme) with those from a high-resolution simulation.

e Here, we diagnose eddy diffusivities via an optimization procedure.
e Match a measure based on the divergent eddy flux, which is defined via

e Consider PV mixing u'q’ = —xVg. We seek a stationary point of
J = [Yei = ¥pilliz + (VA V¥ — V)12 + €] Vii| 72,

where V?¥, = —V - u/g’.
e The terms in | are the mismatch, (weak form of) constraint, and a

the detinition of a force function ¥, (Maddison, Marshall & Shipton, in regularization respectively:. 2 H 4 H £
review with Ocean Model.), where 1€ Z ( i 1+1) IV (ko) isn 2%, st=—_90 __
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e Decomposition is optimal in that — V¥, has minimal L* norm, and as a

where V2¥,, = —V - (0/0z2)(fo/ N2)u'l'.

e Results below. No k¥ > 0 variant here as trivial solution is returned in
lower interface despite multiple initializations.

result ¥, itself is smooth, which aids inversion.

Interface 1 Interface 2

Simulation details

e Three layer QG equations, closed basin, asymmetric wind forcing in
the upper layer, friction in the bottom layer, and partial-slip boundary
conditions on lateral boundaries.

e Please see Maddison, Marshall & Shipton (in review with Ocean Model.)

and Marshall, Maddison & Berloff (2012, J. Phys. Oceanogr.) for precise
details.
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Figure 4: (xgum)i+1/2 field for the same three parameterization variants.

Figure 2: « field of the three parameterization variants tested: unsigned ¥ = &(x); x = &(x)* with «
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constrained to be positive-definite; x = v/EZ(x), where E is the eddy energy field output from simulation relative error mean (m S )

Figure 1: Data and force functions from simulation data (black contour is the location of the mean jet).
From top to bottom: potential vorticity (PV) g; total eddy energy E; eddy force function ¥,; eddy force
function Y, due to buoyancy flux.

and is a mixing-length type variant. Layer 1 Layer 2| Layer 3| Interface 1|Intertace 2
Ko (X) 6.07% 9.21% 10.25% 45 —282
relative error mean (m*s_ ') k(%) = EVE 399% 5.96% 6.66% —97 —290
Layer 1 Layer 2 Layer 5 Layer 1 Layer 2| Layer 3
K ( x) 14.08%  3.01% 1.47% 608 759 o1 Table 2: Table of relative error and mean xqy value associated with the parameterization variants.
k(x) =¢2>0 3259% 3.78% 2.48% 2665 1370 1154
) —EVE | B3 245% 136% 415 76 7o

Table 1: Table of relative error and mean x value associated with the parameterization variants.

e Implemented using FEniCS (Logg et al., 2012, Springer) and solved using
one shot (e.g., Ta’asan, 1991, ICASE Report).

J=J1+J2+ J3

kappa = xi # specify form of kappa
J1 = ((psi - fns["ffd empb %i" % (1 + 1)]) ** 2) * dx
J 2 res = grad(psi) - kappa * grad(fns["q %i n mean" % (1 + 1)])
J 2 = inner(grad(lam), J 2 res) * dx
J 3 = eps *x (grad(xi) ** 2) x dx

dJ = derivative(J, X, du = tests) # compute directional derivative

solve(dJ == 0, X, boundary conditions, solver options) # solve for the system

e K varies in space, is generally locally negative, with strength correlated
with eddy energy.

e Mean of ¥ may be negative in the GM case.
e k. = EC variant is seen to be the most successtul variant (not shown here).

e Calculations based on data from simulations with different
configuration (from ARCHER) show qualitatively similar results.

e Multiple parameter optimizations potentially possible (e.g., eddy
suppressed diffusivity; Ferrari & Nikurashin, 2010, J. Phys. Oceanogr.).

Figure 3: Sample of the Python code implementing the calculation (e.g., Logg et al., 2012, Springer; Alnaes

et al., 2014, ACM TOMS).
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