

Introduction

- To test parameterizations, one often takes a forward modeling approach, comparing the statistics generated from low-resolution simulation (with parameterization scheme) with those from a high-resolution simulation.
- Here, we diagnose eddy diffusivities via an optimization procedure.
- Match a measure based on the divergent eddy flux, which is defined via the definition of a force function Ψ_e (Maddison, Marshall & Shipton, in review with *Ocean Model.*), where

 $\overline{\boldsymbol{u}'\boldsymbol{q}'} = -\nabla \Psi_e + \boldsymbol{e}_z \times \nabla \Phi_e + \boldsymbol{H}_e.$

• Decomposition is optimal in that $-\nabla \Psi_e$ has minimal L^2 norm, and as a result Ψ_e itself is smooth, which aids inversion.

Simulation details

- Three layer QG equations, closed basin, asymmetric wind forcing in the upper layer, friction in the bottom layer, and partial-slip boundary conditions on lateral boundaries.
- Please see Maddison, Marshall & Shipton (in review with Ocean Model.) and Marshall, Maddison & Berloff (2012, J. Phys. Oceanogr.) for precise details.

Figure 1: Data and force functions from simulation data (black contour is the location of the mean jet). From top to bottom: potential vorticity (PV) q; total eddy energy E; eddy force function Ψ_e ; eddy force function Ψ_{eb} due to buoyancy flux.

Diagnosing eddy diffusivities via one-shot optimization Julian Mak¹, James R. Maddison¹ & David P. Marshall²

Implementation and PV mixing parameterization

- Consider PV mixing $\overline{u'q'} = -\kappa \nabla \overline{q}$. We seek a stationary point of $J = \|\Psi_{e,i} - \Psi_{p,i}\|_{L^2}^2 + \langle \nabla \lambda_i, \nabla \Psi_{p,i} - \kappa \nabla \overline{q}_i \rangle_{L^2} + \epsilon \|\nabla \kappa_i\|_{L^2}^2,$ where $\nabla^2 \Psi_e = -\nabla \cdot \overline{u'q'}$.
- The terms in *J* are the mismatch, (weak form of) constraint, and a regularization respectively.

Figure 2: κ field of the three parameterization variants tested: unsigned $\kappa = \xi(x)$; $\kappa = \xi(x)^2$ with κ constrained to be positive-definite; $\kappa = \sqrt{E}\xi(x)$, where *E* is the eddy energy field output from simulation and is a mixing-length type variant.

	relative error		mean (m ² s ^{-1})			
	Layer 1	Layer 2	Layer 3	Layer 1	Layer 2	Layer 3
$\kappa(\mathbf{x})$	14.08%	3.01%	1.47%	608	759	91
$\kappa(\mathbf{x}) = \xi^2 \ge 0$	32.59%	3.78%	2.48%	2665	1370	1154
$\kappa(\boldsymbol{x}) = \boldsymbol{\xi} \sqrt{E}$	8.35%	2.45%	1.36%	415	746	76

Table 1: Table of relative error and mean κ value associated with the parameterization variants.

• Implemented using FEniCS (Logg *et al.*, 2012, *Springer*) and solved using one shot (e.g., Ta'asan, 1991, ICASE Report).

kappa = xi # specify form of kappa
J_1 = ((psi - fns["ffd_empb_%i" % (l + 1)]) ** 2) *
J_2_res = grad(psi) - kappa * grad(fns["q_%i_n_mean
J_2 = inner(grad(lam), J_2_res) * dx
J_3 = eps * (grad(xi) ** 2) * dx
$J = J_1 + J_2 + J_3$
dJ = derivative(J, X, du = tests) # compute direct
<pre>solve(dJ == 0, X, boundary_conditions, solver_optic</pre>

Figure 3: Sample of the Python code implementing the calculation (e.g., Logg et al., 2012, Springer; Alnæs *et al.*, 2014, *ACM TOMS*).

Gent–McWilliams parameterization

$$T = \sum_{i=1}^{3} \|\Psi_{eb,i} - \Psi_{p,i}\|^{2} + \sum_{i=1}^{2} \langle \nabla \lambda_{i}, \nabla \Psi_{p,i} - H_{i}s_{i}^{+}(\kappa_{\text{GM}})_{i+1/2} \nabla (\overline{\psi}_{i} - \overline{\psi}_{i+1}) \rangle_{L^{2}} + \epsilon \sum_{i=1}^{2} \left(\frac{H_{i} + H_{i+1}}{2} \right) \|\nabla (\kappa_{\text{GM}})_{i+1/2}\|_{L^{2}}^{2}, \qquad s_{i}^{+} = \frac{f_{0}^{2}}{g_{i\pm1/2}'H_{i}'}$$

where $\nabla^2 \Psi_{eb} = -\nabla \cdot (\partial/\partial z) (f_0/N_0^2) \overline{u'b'}$.

- with eddy energy.
- Mean of κ may be negative in the GM case.

Affiliation

1 School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Edinburgh, EH9 3FD, UK 2 Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK Correspondence author e-mail: j.mak@ed.ac.uk

THE UNIVERSITY of EDINBURGH

• Similar calculations for the Gent–McWilliams parameterization (Gent & McWilliams, 1990, J. Phys. Oceanogr.), where $\overline{u'b'} = -\kappa_{GM}\nabla \overline{b}$. J is now

• Results below. No $\kappa \ge 0$ variant here as trivial solution is returned in lower interface despite multiple initializations.

Figure 4: $(\kappa_{GM})_{i+1/2}$ field for the same three parameterization variants.

ative err	or	mean (m ² s ^{-1})		
Layer 2	Layer 3	Interface 1	Interface 2	
9.21%	10.25%	45	-282	
5.96%	6.66%	-97	-290	

Table 2: Table of relative error and mean κ_{GM} value associated with the parameterization variants.

Conclusions

• κ varies in space, is generally locally negative, with strength correlated

• $\kappa = E\xi$ variant is seen to be the most successful variant (not shown here). • Calculations based on data from simulations with different configuration (from ARCHER) show qualitatively similar results. • Multiple parameter optimizations potentially possible (e.g., eddy

suppressed diffusivity; Ferrari & Nikurashin, 2010, J. Phys. Oceanogr.).