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Introduction
•To test parameterizations, one often takes a forward modeling approach,

comparing the statistics generated from low-resolution simulation (with
parameterization scheme) with those from a high-resolution simulation.
•Here, we diagnose eddy diffusivities via an optimization procedure.
•Match a measure based on the divergent eddy flux, which is defined via

the definition of a force function Ψe (Maddison, Marshall & Shipton, in
review with Ocean Model.), where

u′q′ = −∇Ψe + ez×∇Φe + He.
•Decomposition is optimal in that −∇Ψe has minimal L2 norm, and as a

result Ψe itself is smooth, which aids inversion.

Simulation details
•Three layer QG equations, closed basin, asymmetric wind forcing in

the upper layer, friction in the bottom layer, and partial-slip boundary
conditions on lateral boundaries.
•Please see Maddison, Marshall & Shipton (in review with Ocean Model.)

and Marshall, Maddison & Berloff (2012, J. Phys. Oceanogr.) for precise
details.

Figure 1: Data and force functions from simulation data (black contour is the location of the mean jet).
From top to bottom: potential vorticity (PV) q; total eddy energy E; eddy force function Ψe; eddy force
function Ψeb due to buoyancy flux.

Implementation and PV mixing parameterization

•Consider PV mixing u′q′ = −κ∇q. We seek a stationary point of
J = ‖Ψe,i−Ψp,i‖2

L2 + 〈∇λi,∇Ψp,i− κ∇qi〉L2 + ε‖∇κi‖2
L2,

where ∇2Ψe = −∇ · u′q′.
•The terms in J are the mismatch, (weak form of) constraint, and a

regularization respectively.

Figure 2: κ field of the three parameterization variants tested: unsigned κ = ξ(x); κ = ξ(x)2 with κ

constrained to be positive-definite; κ =
√

Eξ(x), where E is the eddy energy field output from simulation
and is a mixing-length type variant.

relative error mean (m2 s−1)
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

κ(x) 14.08% 3.01% 1.47% 608 759 91
κ(x) = ξ2 ≥ 0 32.59% 3.78% 2.48% 2665 1370 1154
κ(x) = ξ

√
E 8.35% 2.45% 1.36% 415 746 76

Table 1: Table of relative error and mean κ value associated with the parameterization variants.

• Implemented using FEniCS (Logg et al., 2012, Springer) and solved using
one shot (e.g., Ta’asan, 1991, ICASE Report).

kappa = xi # specify form of kappa

J 1 = ((psi - fns["ffd empb %i" % (l + 1)]) ** 2) * dx

J 2 res = grad(psi) - kappa * grad(fns["q %i n mean" % (l + 1)])

J 2 = inner(grad(lam), J 2 res) * dx

J 3 = eps * (grad(xi) ** 2) * dx

J = J 1 + J 2 + J 3

dJ = derivative(J, X, du = tests) # compute directional derivative

solve(dJ == 0, X, boundary conditions, solver options) # solve for the system

Figure 3: Sample of the Python code implementing the calculation (e.g., Logg et al., 2012, Springer; Alnæs
et al., 2014, ACM TOMS).

Gent–McWilliams parameterization

• Similar calculations for the Gent–McWilliams parameterization (Gent &
McWilliams, 1990, J. Phys. Oceanogr.), where u′b′ = −κGM∇b. J is now

J =
3

∑
i=1
‖Ψeb,i−Ψp,i‖2 +

2

∑
i=1
〈∇λi,∇Ψp,i− His+i (κGM)i+1/2∇(ψi− ψi+1)〉L2

+ ε
2

∑
i=1

(
Hi + Hi+1

2

)
‖∇(κGM)i+1/2‖2

L2, s+i =
f 2
0

g′i±1/2Hi
,

where ∇2Ψeb = −∇ · (∂/∂z)( f0/N2
0)u′b′.

•Results below. No κ ≥ 0 variant here as trivial solution is returned in
lower interface despite multiple initializations.

Figure 4: (κGM)i+1/2 field for the same three parameterization variants.

relative error mean (m2 s−1)
Layer 1 Layer 2 Layer 3 Interface 1 Interface 2

κGM(x) 6.07% 9.21% 10.25% 45 −282
κGM(x) = ξ

√
E 3.99% 5.96% 6.66% −97 −290

Table 2: Table of relative error and mean κGM value associated with the parameterization variants.

Conclusions
• κ varies in space, is generally locally negative, with strength correlated

with eddy energy.
•Mean of κ may be negative in the GM case.
• κ = Eξ variant is seen to be the most successful variant (not shown here).
•Calculations based on data from simulations with different

configuration (from ARCHER) show qualitatively similar results.
•Multiple parameter optimizations potentially possible (e.g., eddy

suppressed diffusivity; Ferrari & Nikurashin, 2010, J. Phys. Oceanogr.).
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