Covariability of Southern Hemisphere tropical edge metrics with the SAM

Dr. Penelope Maher1,2 and Prof. Steven Sherwood2

1Exeter Climate Systems, Mathematics, University of Exeter, United Kingdom.
2Climate Change Research Centre, University of New South Wales, Australia.

p.maher@exeter.ac.uk

\section{1) Motivation and Aim}
The tropics are expanding. Models capture the expansion but the rate is much slower than observations. Metrics for the tropical edge include the subtropical (ST) jet and ST ridge. The tropical edge interacts with extratropical variability, specifically the Southern Annular Mode (SAM).

\section{2) Idealised models of Hadley Circulation}
Two limiting cases are widely used to explain the Hadley cell (HC) behaviour and to interpret changes in circulation. The nearly inviscid limit of Held and Hou (1980)[2]:
- local $R_o \approx 1$ (eddy momentum flux divergence ≈ 0)
- assumes thermal wind balance and conservation of absolute angular momentum
- HC edge occurs where radiative heating balances cooling

The eddy permitting limit of Held (2000)[3]:
- local $R_o \approx 0$
- assumes momentum gained in tropics (easterly eddies) balanced by mid-latitude momentum loss (westerly eddies)
- HC edge where shear becomes baroclinically unstable

\section{3) Expected Relationships}

\subsection{Winter:}
- inviscid limit applies[4]
- poleward displaced HC edge linked to stronger ST jet in order to conserve momentum
- eddy and subtropical jets are well separated due to equatorward edge of HC in seasonal cycle favouring a double jet structure

\subsection{Summer:}
- eddy-driven limit applies[4]
- poleward displaced HC edge linked to weaker ST jet due to surface drag strengthening HC and reducing shear to maintain baroclinicity
- eddy and subtropical jets not well separated and HC edge nearer mid-lats favouring a single jet structure

\subsection{Annually:}
- poleward ST jet, poleward ridge and -SAM (contracted westerlies) associated with a poleward HC edge
- strong ridge associated with poleward ridge
- idealised study shown during +SAM a fast single jet is favoured and SAM describes pulsing of the single jet[5]
Likewise, -SAM linked to slower and double jet structure and SAM describes the eddy-driven jet position.

\section{5) Key Results: Covariability}

1. Ridge position plays a central role in joining tropical edge metrics
 (a) poleward ridge is strong (link 1) only captured models during 1JA
 (b) poleward ridge and weak ST jet (link 2)
 (c) ST jet intensity is conditionally independent of its position (link 3) suggests no dominant interaction (likely opposing correlations)
 (d) intensities of ST jet and ridge are conditionally independent suggests variability is not, to first order, due to variability in the HC strength
 (e) the above are found in all seasons and generally well captured by each model
2. ST jet intensity is conditionally independent of the SAM in all seasons
3. SAM interactions with ST jet and ridge vary seasonally and modelled SAM accounts for too much variability (excessive links)

\section{6) Interpretation}

\subsection{Q1. Why is a weak ST jet linked to a poleward ridge but not a poleward ST jet (links 2 and 3)?}
- Poleward HC edge associated with weakening of ST jet in eddy-driven limit but this is expected in summer. Why is this found in all seasons and what is different in summer?
- This work is ongoing. We plan to look at the baroclinic instability at the latitude of the ST jet.

\subsection{Q2. Why is a poleward ridge strong (link 1)?}
- Hypothesis: Meridional momentum balance alone can explain why a poleward ridge is strong. Test a scaling relation assuming a meridional steady state. Rayleigh friction and no eddies:

$$\frac{dv}{dt} = -\frac{1}{\rho_0} \frac{dp}{dy} - fu - \alpha v = 0$$

Assume overturning and zonal wind are unrelated to HC width, integrate wrt t and taking the total derivative gives:

$$\frac{Dp}{D\gamma} = \frac{\Delta p}{\Delta \gamma} = \frac{\rho_0 - \rho_1}{\rho_0 - \rho_1} \frac{\rho_1}{\rho_0}$$

The change in pressure (Dp) and position of ridge ($D\gamma$) is given by HC pressure difference (Δp) and width ($\Delta \gamma$).

- Annual mean $\frac{\Delta p}{\Delta \gamma} = 0.25 \text{ kPa}^{-1}$
- Seasonal slopes not significantly different to annual
- Seasonal means located on annual mean slope
- Scaling does a good job of predicting the pressure difference between the ITCZ and ridge based on their latitude

\section{7) Conclusions}

1. Ridge position joins tropical edge metrics. A strong ridge is located poleward in observations but poorly represented in models (except winter). Their relationship is explained using a simple scaling mechanism based on meridional momentum balance.
2. CMIP5 models capture many aspects of observed variability. Some model specific problems exist especially in summer autumn.
3. Weakening of ST jet with a poleward HC is consistent with eddy-driven limit in all seasons but with subtle summer difference.
4. Links with SAM vary with season. The SAM does not interact with ST jet intensity in any season. SAM accounts for too much of the tropical edge variability in the models.

\section{References}
[6] F. Maher and S. Sherwood Disentangling the multiple sources of large-scale variability in Australian wintertime precipitation. J. Climate (2014)