

DE LA RECHERCHE À L'INDUSTRIE

KASCADE: Stable Boundary Layer Characterization in an Orographic Complex Region

Gert-Jan Duine

Commissariat à l'Energie Atomique

Et aux Energies Alternatives Service Mesures et modélisation des Transferts et des Accidents graves Laboratoire de Modélisation des Transferts dans l'Environnement

> Observatoire Midi-Pyrenees <u>Laboratoire d'Aérologie</u> ANalyses des Transferts d'Energie et d'Espèce en Trace

Acknowledgements: CEA: <u>T. Hedde, P. Roubin</u> LA: <u>P. Durand</u>, F. Lohou, M. Lothon, S. Derrien, C. Jarnot, P. Medina, E. Pique LPCA: P. Augustin, M. Fourmentin

21st Symposium on Boundary Layer and Turbulence, AMS, Leeds, UK Session Stable Boundary Layers 3: June 10, 2014

Motivation

- → Certain facilities at Cadarache could accidentally emit pollutants in the SBL.
- → Stable Boundary Layer (SBL) is one of the most penalizing conditions for pollutant release in the atmosphere.
- → Clear skies and calm winds in the Provence occurs frequently & throughout the year and is influenced by local relief modifying local stability-related flows
- → The Provence is one of most densely populated parts of France and has an active agricultural area

Figure: CEA-centre Cadarache

KASCADE-campaign:

<u>KA</u>tabatic winds and <u>S</u>tability over <u>CA</u>darache for <u>D</u>ispersion of <u>E</u>ffluents

Phd-Thesis: "Dispersion of pollutants in stable boundary layer conditions in the Durance middle valley"

Physical geography of Provence

- Large variety of orography and land use
- Influences of different synoptical and local meteorological events
 - Several field campaigns, except for SBL over complex terrain

urance Valley

Sea breeze (summer months)

Mistral

Rhône Valley

Mediterranean Sea

Local slope and valley winds during stable conditions in Durance middle valley: KASCADE 2013

Southern Alps

Cadarache

Precipitation events

At the junction of 2 valleys

- Shallow valleys
- Less than moderate slope
- Both impact differently on local wind field and thus dispersion

Radiation divergence

Wind direction:

- Before sunset westerly (up-valley) flow
- At sunset flow turns to down valley wind, starting from the surface
- Down valley flow remains until sunrise...
- Cadarache valley katabatic wind → <u>drainage flow</u>
- Durance valley wind \rightarrow channeled?

A night during KASCADE

SBL-formation and local winds

Synoptic NW-flow (> 1km)

Sunset 1710 UTC Sunrise 0632 UTC

SBL-height = 225m
SBL-strength =~6.5°C
Stack of layers:
SBL_{CV} <60m

- SBL_{DV}

NW

Durance Valley (30

Flow characteristics	Cadarache Valley	Durance Valley
Flow depth	80-100m	250m
Jet height	40m	175m
Max wind speed	2 m/s	6 m/s

05 UTC

SBL-formation and local winds

Synoptic NW-flow (> 1km)

NW

Durance Valley (30

 $-SBL_{DV}$

SBL-formation and local winds

0630 UTC

IOP-12

Sunset 1702 UTC Sunrise 0640 UTC

- SBL-height = 120m
- SBL-strength = 7.5°C

- 100m 500m height: Flow into CV (no blocking hill)
- CV drainage flow is formed
- CV-flow reaches height of 50m (instead of >80m)
- Height of CV-flow important for dispersion

Durance Valley (30') Cadarache Type (135') Laso

Summary / conclusions / prospects

KASCADE-dataset...

... 1st SBL field-experiment in South-Eastern France over complex terrain

... shows ability to capture radiation divergence

... reveals the complex wind pattern during SBL-conditions over Cadarache:

- Stack of stable & neutral layers are observed, whose interaction result in complex wind patterns which determine pollutant dispersion
- Results in 2 different stability related flow types
 - Drainage flow: Cadarache Valley wind; independent of above-valley flow
 - Combination of <u>drainage/LLJ/channeled flow</u>? Durance Valley wind dependent on above-valley flow direction
 - Governing mechanisms for DV-wind under investigation

... will serve as validation for high resolution numerical modeling (WRF)

... extend 1D- analysis to 3D-analysis:

 $\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{w\theta}}{\partial z} - \frac{\partial LW^*}{\partial z} - w \frac{\partial \overline{\theta}}{\partial z} - \overline{U}_j \frac{\partial \overline{\theta}}{\partial x_j}$

(Combination of observations & modeling)

... will be open access by the end of 2015

Merci pour votre attention

Questions...?

More information

E-mail: gerardus.duine@cea.fr

But my name is Gert-Jan...

IOP-Outlook

Week#	date	IOP#	General conditions	
			a (evening)	b (morning)
3	14to15/01	1		Clear sky to snow
4	21to22/01	2	Mistral	Mistral
	22to23/01	3	Clear sky <18UTC rain	
	23to24/01	4	Cloudy to CS/CW	Clear sky; SBL
	24to25/01	5	Clear sky. SBL develops Clear sky; SBL	
5	28to29/01	6	Mistral d.a.	Clear sky; SBL
	29to30/01	7	Windy	Clear sky; SBL
	30to31/01	8	PP: windy start	
6	07to08/02	9	Mistral	Clear sky; SBL
	08to09/02	10	Turbulent cond	
7	11to12/02	11	Rain	Foggy morning, SBL
	12to13/02	12	PP: windy start	Clear sky; SBL
	13to14/02	13	PP: windy start + tbl > 200m Clear sky & tbl	
	14to15/02	14	Clear sky; SBL	Clear sky; SBL but tbl
8	18to19/02	15	CA, 5/8	Clear sky; SBL
	19to20/02	16	PP: windy start	Clear sky; some fog
	20to21/02	17	Clear sky; tbl	Clear sky; SBL
	21to22/02	18	Clear sky; SBL	8/8; RH 100%
9	25to26/02	19	Snow; Clear sky; SBL; Tmin -8C	
	26to27/02	20	Clear sky; deep SBL	
	27to28/02	21	Clear sky; SBL	
	28to01/03	22	PP:windy start; EF -> rain	
	01to02/03	23	Windy start; EF (Saturday)	

Continuous Observation Period (COP): 2012/12/12 – 2013/03/19

Intensive Observation Periods: 2013/01/14 – 2013/03/02

7 operational weeks for IOPs:

- 23 IOPs have been conducted
- 16 IOPs have TB-experiments with SBLdevelopment

12 – 12 UTC

5/8	Cloud cover		
CA	Calm Atmosphere		
EF	Early Finish		
PP	Postpone of start		
SBL	Stable Boundary Layer		
tbl	Turbulent conditions		

Radiation divergence error estimation

From IC-campaign Lannemezan 04/2013 – 06/2013

Corrections on calibration coefficient and body temperature for CNR1.

Errors	δΔLW [W m ⁻²]	δLHR [°C h ⁻¹]
Total	0.94	0.15
Upward	0.69	0.11
Downward	1.36	0.21

The uncertainty for downward component is twice as large.

LHR upward & downward

Median of 58 dry nights between 09/01 (15 hrs) and 17/03 (12 hrs).

LHR downward shows extra problems for time frame:
Dew / ice formation early morning → 31 nights retained.

Tendency:

Maximum cooling by LHR around sunset, cooling gradually decreases, consistent till after sunrise.

After sunrise Turbulent Heating Rate takes over transport of heat.

-σ +σ

Shortly after sunset: 40% of cooling explained by LHR. Most of uncertainty in around sunrise comes from downward part, but median value ~ 0