

Turbulence Measurements for a Near-Field Pollutants Dispersion Campaign in a Stratified Surface Layer

Xiao Wei, Eric Dupont, Bertrand Carissimo, Eric Gilbert and Luc Musson-Genon

21 BLT, 9-13 June 2014, Leeds, UK

Introduction

- Pollutants dispersion in a stable atmospheric boundary layer and in complex environment still relatively poorly described by modeling
- Stable condition difficult to reproduce in a wind tunnel
- Major interest in the field of air pollution from human activities (industrial risks, road transportation, etc.)
- Experimental program on the site SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) measuring structure of turbulence and associated pollutants dispersion through high temporal and spatial resolution measurements in a stratified surface layer and in near-field

- SIRTA experimental program
- Impact of terrain heterogeneity
- Turbulence study for measurements during IOP
- Conclusion and perspective

- SIRTA experimental program
- Impact of terrain heterogeneity
- Turbulence study for measurements during IOP
- Conclusion and perspective

SIRTA experimental program: objectives and characteristics

Objectives:

- To characterize the fine structure of turbulence and associated dispersion through high temporal and spatial resolution measurements in a real site
- To find expected relationships between concentration fluctuations and passage of turbulent structure

Characteristics:

- Experiment in near field (50 to 200 m)
- Focus on stable thermal stratification, but may include some neutral stratification or slightly convective situations
- High frequency measurements (about 10Hz) to cover the entire frequency spectrum of fluctuations
- Large number of sensors measuring turbulence and concentration of tracer gas to document spatial inhomogeneities

SIRTA experimental program: field and meteorological conditions

Meteorological conditions :

- Wind direction between 75° and 105°, being as close as possible to 90°(easterly wind)
- Wind velocity between about 1 and 5 ms⁻¹ (at the release height i.e. 3 m) in order to stay in unfavorable dispersion conditions
- Stable stratification checked both with positive temperature difference T(30m) T(10m) and with positive Monin-Obukhov length

SIRTA experimental program: devices and sensors position

Source (at 3m height)

12 ultrasonic anemometers:

- Continuous measurements
- Measuring at 10 Hz: three components of wind speed and air temperature
- "Sonic square" (at 3m height): NW, NE, SW, SE
- "Sonic arc at 50m" (at 3m height): 20N, 10N, 0, 10S, 20S
- Two masts: 10mSW, 10mSE and 30mSE

6 photo ionization detectors (PID):

- Measurements during tracer tests
- Measuring at 50Hz
- All at 3m height

- SIRTA experimental program
- Impact of terrain heterogeneity
- Turbulence study for measurements during IOP
- Conclusion and perspective

- Terrain heterogeneity in zone 1
- Wind channeling by the forest to the north

- Terrain heterogeneity in zone 1
- Wind channeling by the forest to the north

- Terrain heterogeneity in zone 1
- Wind channeling by the forest to the north

Few wind for northerly sector

- Terrain heterogeneity in zone 1
- Wind channeling by the forest to the north

- Picks around 90°and 270°
- Few wind for northerly sector

- SIRTA experimental program
- Impact of terrain heterogeneity
- Turbulence study for measurements during IOP
- Conclusion and perspective

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_*(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_*(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_{*}(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_{*}(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_*(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_*(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
$L_{MO}(\mathbf{m})$	21	16	40	20	24	34	176	131	416

- Intensive Observation Period (IOP) on 5th June 2013: Selection of a 60min sub-period (from 19:08 to 20:08) with stationary meteorological conditions
- Vertical stability verified by T gradient and L_{MO}
- *(u, v, w)* in meteorological reference and *(a,b,w)* in rotated frame
- *dd* as mean wind direction

	NE	NW	SE	SW	20N	20S	10mSW	10mSE	30mSE
$dd_{mean}(^{\circ})$	111.5	106.8	95.0	96.1	108.0	92.4	75.4	71.7	58.2
a_{mean} (ms ⁻¹)	0.92	1.00	1.63	1.83	1.22	1.68	2.06	2.42	3.54
σ_a^2 (m ² s ⁻²)	0.44	0.53	0.54	0.61	0.48	0.56	0.67	0.81	1.29
σ_b^2 (m ² s ⁻²)	0.30	0.33	0.50	0.49	0.38	0.48	0.52	0.52	0.77
σ_w^2 (m ² s ⁻²)	0.10	0.12	0.13	0.13	0.11	0.14	0.25	0.25	0.32
$TKE(m^2s^{-2})$	0.42	0.49	0.59	0.61	0.49	0.59	0.72	0.79	1.19
$u_*(ms^{-1})$	0.21	0.23	0.26	0.25	0.22	0.28	0.36	0.37	0.53
Q_0 (Kms ⁻¹)	-0.03	-0.06	-0.03	-0.06	-0.03	-0.05	-0.02	-0.03	-0.03
L_{MO} (m)	21	16	40	20	24	34	176	131	416

Turbulence study for measurements during IOP: integral length scale

Integral length scale : characteristic of the largest scales in a turbulent flow

$$L = a_{mean}T_e$$

Integral time scale approximation

$$T_i = \int_0^\infty R(\tau) d\tau \qquad T_e = \int_0^{\tau_e} R(\tau) d\tau \approx \tau_e$$

	NE	NW	SE	SW	20N	20S	10mSW	30mSE
L_{aa} (m)	14.82	13.13	14.86	16.69	19.62	14.28	33.31	91.95
L_{bb} (m)	5.67	6.42	11.11	12.47	7.68	12.27	11.51	24.76
$L_{ww}(\mathbf{m})$	1.83	2.00	1.96	2.02	2.07	2.35	5.96	8.84

- Quantified anisotropy of turbulence near ground in stable conditions
- *L* increasing with altitude

Turbulence study for measurements during IOP: integral length scale

Integral length scale : characteristic of the largest scales in a turbulent flow

$$L = a_{mean}T_e$$

Integral time scale approximation

$$T_i = \int_0^\infty R(\tau) d\tau \qquad T_e = \int_0^{\tau_e} R(\tau) d\tau \approx \tau_e$$

	NE	NW	SE	SW	20N	20S	10mSW	30mSE
L_{aa} (m)	14.82	13.13	14.86	16.69	19.62	14.28	33.31	91.95
L_{bb} (m)	5.67	6.42	11.11	12.47	7.68	12.27	11.51	24.76
$L_{ww}(\mathbf{m})$	1.83	2.00	1.96	2.02	2.07	2.35	5.96	8.84

- Quantified anisotropy of turbulence near ground in stable conditions
- *L* increasing with altitude

Turbulence study for measurements during IOP: integral length scale

Integral length scale : characteristic of the largest scales in a turbulent flow

$$L = a_{mean}T_e$$

Integral time scale approximation

$$T_i = \int_0^\infty R(\tau) d\tau \qquad T_e = \int_0^{\tau_e} R(\tau) d\tau \approx \tau_e$$

	NE	NW	SE	SW	20N	20S	10mSW	30mSE
L_{aa} (m)	14.82	13.13	14.86	16.69	19.62	14.28	33.31	91.95
L_{bb} (m)	5.67	6.42	11.11	12.47	7.68	12.27	11.51	24.76
$L_{ww}(\mathbf{m})$	1.83	2.00	1.96	2.02	2.07	2.35	5.96	8.84

- Quantified anisotropy of turbulence near ground in stable conditions
- *L* increasing with altitude

Spatial cross-correlation of anemometers (NE,NW) and (SE,SW) as a function of a normalized time lag

 Peaks on the left of the vertical line at τU/dxcosθ=1

Turbulence study for measurements during IOP: velocity cross-correlation

Eddy advection velocity deduced from cross-correlation

$$U_{adv} = dx_{eff} / \tau_{max}$$

Ratio of the eddy advection velocity to the mean wind speed at instrument level $r = U_{adv} / U$

	θ (°)	$U(\text{ms}^{-1})$	$U_{adv a}$ (ms ⁻¹)	$U_{adv b} (\text{ms}^{-1})$	$U_{adv w}$ (ms ⁻¹)	r _a	r _b	<i>r</i> _w
(NE, NW)	19.1	0.96	2.53	2.71	-	2.64	2.82	-
(SE, SW)	5.6	1.73	2.82	2.28	2.37	1.63	1.32	1.37

Discussion:

- U_{adv} much greater than U
- Similar results found in HATS field program (Horst T.W. *et al.* 2004)
- Strong vertical velocity gradient in the surface layer near the ground and eddy advection affected by the flow at higher level
- Taylor's hypothesis not valid during the experiment

Turbulence study for measurements during IOP: power spectra

TKE power spectra

- Comparison with Kolmogorov's theory
- Existence of an inertial subrange
- Slope between -1 and -5/3

Eddy surface layer very close to ground (Drobinski *et al.* 2004) :

- Eddies coming from upper layers stretched along wind direction and lose their isotropy
- Three regions found in velocity spectra (in near-neutral stratification)

$$\begin{cases} S_{ii}(k) \propto k^{-5/3} & \text{for } k \ge k_u \\ S_{ii}(k) \propto k^{-1} & \text{for } k_u \ge k \ge k_l & i = (a, b) \\ S_{ii}(k) \propto k^0 & \text{for } k_l \ge k \end{cases}$$
$$\begin{cases} S_{ww}(k) \propto k^{-5/3} & \text{for } k \ge k_u \\ S_{ww}(k) \propto k^0 & \text{for } k_l \ge k \end{cases}$$

Drobinski, P., P. Carlotti, R.K. Newsom, R.M. Banta, R.C. Foster, J. Redelsperger, 2004: The Structure of the Near-Neutral Atmospheric Surface Layer. *J. Atmos. Sci.*, **61**, 699–714.

Turbulence study for measurements during IOP:

<u>power spectra</u>

Discussion:

- Average spectra of anemometers at the same level
- Different spectrum form between vertical and horizontal velocity components
- Vertical velocity spectrum increasingly closed to the others with increasing heights
 → less anisotropic turbulence at higher level
- Some evidence of k⁻¹ subrange found in spectra (slope 0 in figures)

- SIRTA experimental program
- Impact of terrain heterogeneity
- Turbulence study for measurements during IOP
- Conclusion and perspective

Conclusion and perspective

Conclusion for turbulence study

- Heterogeneity: impact of the forest on wind direction and velocity
- Characterization of the turbulence by integral length scale showing strong anisotropy: $L_{aa} > L_{bb} >> L_{ww}$
- Spatial velocity cross-correlation: $U_{adv} > U$
- Velocity spectra: evidence of -1 power law at intermediate frequency subrange

Perspective:

- Turbulence data analysis for continues measurements over 2 years \rightarrow turbulence characteristics varied with stability condition
- Relationships between turbulence and concentration fluctuations
- Additional PIDs allowing to extend the instrumental set-up
- Numerical simulations with the open source CFD code Code Saturne co-developed at CEREA using different turbulence models $(k-\varepsilon, R_{ij}-\varepsilon)$

THANK YOU FOR YOUR ATTENTION

Email: xiao.wei@edf.fr

21 BLT, 9-13 June 2014, Leeds, UK