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Introduction - |

»Under very stable conditions numerical weather predictions (NWP) models
have problems to forecast surface minimum temperatures, the height and
strength of low level jets, the temperature inversion of SBL, the height of the

SBL, and life-time of low pressure systems (low surface drag) (Viterbo et al. 1999;
McCabe and Brown 2007; Steeneveld et al. 2008; Sandu et al. 2013).

» The very SBL usually happens under clear sky and light wind.

» It has been shown that in the very SBL

a)Turbulence can be intermittent (Salmond and McKendry, 2002; Mahrt, 1998; Poulos et al., 2002;
Nappo, 1991)

b)Turbulence can be localized (Acevedo and Fitzjarrald 2003; Nakamura and Mahrt, 2005)

c) Features of the landscape (e. g. topography and land cover) affect the distribution of surface
turbulence, winds, temperatures and scalars (Acevedo and Fitzjarrald 2003; LeMone et al., 2003;
Mahrt, et. al. 2001).
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Introduction - |l

In most NWP models a K-Theory 1s used to describe the fluxes (MacCabe
and Brown, 2007) — — \ Ox
wi=-K,( fRi,) ) -

where (AG
5 ( AZ)

Ri, = . [( s, )2+ (A%Z )2

Different types of stability functions to adjust the amount of mixing:
» no mixing when Ri, > 1/4 — Short tails;
> artificial mixing when Ri, > 1/4 — Long tails.

1
1+10Rib

f(Rib) = Met office global model (McCabe and Brown, 2007)

Mahrt (1987) suggested that spatial heterogeneity can be one of the
reasons to justify unphysical extra mixing to occur. — Localized pockets
of mixing attenuated by averaging process.



Main goals

« Try to find out if the practice of keeping unrealistic

mixing above Ri_, in models can be supported by real
observations

 Link turbulent mixing to surface terrain characteristics



HVAMS — Intense Observational Period (IOP) - From 09/15/03 to 11/01/03
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M\.\\tOpography

2. Topographic site characteristics

To determine local topographic characteristics of all the sites we used USGS
topographic map with a ~ 30m x 30m resolution.

Elevation (z) 5
Local conc:avity:V z(x,y) where z(x,y) = ax? +by? + cxy + dx +tey + f

[~

St. 5 real

. St. 5 approximated
‘tepography




2. Results - Topographic site characteristics

Concavity Maximum/ | mz-z Elevation above sea
(x10™ m'l) minimum (m) level or Hudson
(4ab — cz) River (m)

St. 1 49.66 No 20.67 156
St. 2 -20.16 Maximum 1.39 47
St. 3 -5.29 No 3.70 45
St. 4 0.82 No -2.86 94
St 5 -171 36 Maximum -44 93 108
St. 6 -52.81 No -14.31 25
St. 7 29.92 Minimum 13.74 133.2
St. 8 -9.89 No -7.56 53
St. 9 -39.68 No -14.67 76
St. 10 0.88 No -0.91 64.9
St. 11 -20.81 No 3.85 202
(H1)
St. 12 -1.24 No 21.79 133
(H2)
St. 13 -9.02 No 47.16 559
(H3)
St. 14 9.32 Minimum -4.33 414
(H4)
St. 15 -10.32 No 11.48 128
(H5)
St. 16 -17.55 Maximum 5.01 3
(S)

=(4ab-c?) > 0 there is local maximum (a and b < 0) or minimum (a and b > 0). When is local

minimum there is possibility of cold air pooling.

*(4ab-c?) < 0 no maximum or minimum might be hyperbolic parabaloid (saddle point) or

parabolic cylinder .




2. Sheltering

North

Local landscape/Sheltering

Station 7

-Small agricultural clearing
-Site with worst exposure
in the network

TF(¢) = Ust(cb) / Umax network ((b)

& = wind direction

West

East

Station 8

-Field surrounded by small
sparse trees

-One of the sites with best
exposure among the flux
stations

Facing unknown direction Facing unknown direction
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2. Results - Sheltering
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3. Mesoscale influences
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3. Seeklng a regional Ri, (Ri,,)
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3. Results - Mesoscale influences
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4. Fluxes and the local bulk R|b (Riy)
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4. Local flux contribution to regional flux

— Heat Flux
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Rip,
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4. Local stability in terms of regional stability

___Ribg=1/4
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Considering only nights
with Ri,, > 2 the network
average momentum and
heat fluxes are,
respectively, -0.012 kg m-*
s2and -4.32 W m=. The
contribution of local fluxes
at supercritical stability
account to only 6 % and 8
% of the exceeding
network momentum and
heat fluxes, respectively.
This is clearly not a
serious concern.
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4. Results — Landscape and mixing
Fluxes and concavity

concavity and momentum flux concavity and heat flux
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4. Results — Landscape and mixing
TF and Fluxes

TF and momentum flux
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5. Conclusion

a) Mesoscale influences

« Observations show that the need for extra mixing above
Ri., in NWP models is a result of spatial averaging.

*Model formulations for f(Ri,,) do not describe the HVAMS

results.

The short-tail and Delage 97 stability functions perform better when the
stability is weak, but underestimate otherwise. The long-tail and Louis81
perform well for stronger stability but overestimate otherwise.
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5. Conclusions
b) Turbulent fluxes, concavity and TF

Local surface concavity is more important for conditions of
calm winds and less important for windy conditions.

*In contrast to concavity effects, TF tends to be more
influential in windy conditions than in calm winds. During
windy conditions the overall fluxes are higher and differences
in the fluxes due to obstructed and open direction are
therefore higher too. These results perhaps would be clearer
if there were a wider range of TF with many more stations.
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Suggestions for future work

- With 100 stations (such as the proposed NCAR CentNet; Oncley et al.,
2010), the effects of local curvature, TF, and other surface parameters on
mixing.

It is extremely important to do an assessment of these landscape indices
before siting surface stations, to isolate the effects of a particular
landscape parameter.
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Thank Youl!
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