Large-eddy simulation of the stable boundary layer

Revisiting GABLS with a linear algebraic subgrid-scale (LASS) turbulence model

Rica Enriquez

Robert L. Street

School of Engineering

Talking Points

- How does LASS behave under different cooling fluxes?
- Can it provide appropriate SGS stress anisotropy?
- How does LASS performs in a moderately stable case (GABLS)?

Simulating the SBL: Basic Difficulties

- Energetic eddies < 1 m
 - Computationally expensive
 - Need domains that are both large enough and resolved enough
- Stratification inhibits vertical motions

- Subgrid-scale (SGS) turbulence is anisotropic

Simulating the SBL: Desired Turbulence Model Qualities

- Predict Mean Flow
 - Velocities and Temperature
- Provide Turbulence Anisotropy

 SGS turbulence are different magnitudes
- Provide Back Scatter of Energy

– Move energy from small scales to large scales

The Linearized Algebraic Subgrid-Scale Turbulence Model (LASS): Components

+ Production + Pressure Redistribution

+ Dissipation + Buoyancy Generation

LASS: Model Summary

SGS Heat Flux (\tilde{a}_i) Model

Pressure Redistribution Model

SGS Stress Term

SGS Heat Flux Term

(Launder, Reece, and Rodi, 1975; Launder and Samaraweera, 1979)

LASS: Implementation

 Use Advanced Regional Prediction System (ARPS)

- 3D

- Non-hydrostatic
- Compressible
- Parallelized
- Parameterizations for radiation, soilvegetation models, and cloud microphysics
- Tested in idealized NBL and CBL

Simulating the SBL & LASS

Stable Boundary Layer: Stepped Cooling

Simulations similar to Jiménez and Cuxart (2001)

SBL8: 8 m (Δ_x), 2.5 (Δ_y) **SBL16**: 16 m (Δ_x), 5 m (Δ_y)

Vertically Integrated TKE

Surface Potential Temperature

- Larger differences in surface PT with higher cooling flux
- Added buoyancy term (active cases) accelerates runaway cooling

SGS Anisotropy-Lumley Triangle

Decreasing anisotropy with height Stress tensor shape is disc-like

GABLS Setup

Simulations similar to Kosović and Curry (2000), Beare et al. (2006)

GABLS $\Delta_x = 12.5$ m

GABLS $\Delta_x = 6.25$ m

GABLS $\Delta_x = 2 \text{ m}$

Acknowledgments

Tina Chow, Peter Sullivan, and Bowen Zhou

Research Funding

Computer Resources Conference Funding

> THE ROYAL SOCIETY

Computational Time Cost Comparisons

Turbulence Model	Total Cost Factor
Smagorinsky	1.00
TKE	1.04
Dynamic Wong-Lilly	1.13
LASS	1.26

Bottom Boundary Conditions

yields

$$C_D = \left[\frac{1}{\kappa} \ln\left(\frac{z_1 + z_0}{z_0}\right)\right]^{-2}$$

ch gives C_D given the grid spatant, typically set equal to 0.4

 $\tau_{wall} = C_D |u_1| u_1$

Vertical Velocity z = 10 m

- Differences in the vertical velocity patterns are most distinct in the near-wall region
- Smaller resolved scales observed in GLASS