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Talking Points 

•  How does LASS behave under different 
cooling fluxes? 

•  Can it provide appropriate SGS stress 
anisotropy? 

•  How does LASS performs in a moderately 
stable case (GABLS)? 

Surface Cooling

Wind 
Shear
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Simulating the SBL:  
Basic Difficulties 

•  Energetic eddies < 1 m 
– Computationally expensive 

•  Need domains that are both large enough and 
resolved enough 

•  Stratification inhibits vertical motions 
– Subgrid-scale (SGS) turbulence is anisotropic 



Simulating the SBL: 
Desired Turbulence Model Qualities 

•  Predict Mean Flow 
– Velocities and Temperature 

•  Provide Turbulence Anisotropy 
– SGS turbulence are different magnitudes 

•  Provide Back Scatter of Energy 
– Move energy from small scales to large scales 



The Linearized Algebraic Subgrid-Scale 
Turbulence Model (LASS): Components 

∂
∂t Turbulent Flux( ) =  Advection  + Transport & Diffusion

+ Production + Pressure Redistribution ∂
∂t

+ Dissipation + Buoyancy Generation ∂
∂t

+ Coriolis ∂
∂t



LASS: Model Summary 
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Pressure Redistribution Model 

(Launder, Reece, and Rodi, 1975; Launder and Samaraweera, 1979)!
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•  Use Advanced Regional Prediction 
System (ARPS) 
– 3D 
– Non-hydrostatic 
– Compressible 
– Parallelized 
– Parameterizations for radiation, soil-

vegetation models, and cloud microphysics 
•  Tested in idealized NBL and CBL 

LASS: Implementation 



Simulating the SBL 
& 

LASS 



0 4 8 12

−0.05

−0.03

−0.01

0

-0.005

Time (10,000 s)

S
u

rf
a

ce
 B

u
o

ya
n

cy
 F

lu
x 

(K
 m

 s
−

1
)

-0.01

-0.025

-0.05

Stable Boundary Layer: 
Stepped Cooling 

SBL8: 8 m (Δx), 2.5 (Δy) 
SBL16: 16 m (Δx), 5 m (Δy) 
 

Simulations similar to 
Jiménez and Cuxart (2001) 

Initialize with NBL 



Vertically Integrated TKE 
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SBL16

SBL8

SBL16-Passive

Enhanced Turbulence 
– Spikes of TKE 

Laminarization 



Surface Potential Temperature 
7.2. STEP COOLING FLUX SIMULATIONS 101
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Figure 7.3: Temporal change of the surface potential temperature. Constant cooling fluxes
are applied in two hour blocks and increase with time.

development of the profiles appears reasonable for a given cooling flux (except for the very

strong cooling case of -0.05 K m s�1). The surface cools along with some of the air aloft.

The profiles also show that the abrupt transition from one cooling flux to another a�ects the

profiles much more than continuous cooling at the same flux.

•  Larger differences in 
surface PT with 
higher cooling flux 

•  Added buoyancy 
term (active cases) 
accelerates runaway 
cooling 

Runaway 
Cooling 



SGS Anisotropy-Lumley Triangle 

Decreasing anisotropy with height 
Stress tensor shape is disc-like 

see Pope (2000) 

Sphere 

Rod Disc 



GABLS Setup 
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Simulations similar to Kosović and Curry (2000), Beare et al. (2006) 

LASS 12.5: 12.5 m (Δx), 
3.9 (Δy) 
LASS 6.25: 6.25 m (Δx), 
1.95 m (Δy) 
 



GABLS Δx = 12.5 m  



GABLS Δx = 6.25 m  



GABLS Δx = 2 m  
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EXTRA SLIDES 



Computational Time Cost 
Comparisons 

Turbulence Model! Total Cost Factor!
Smagorinsky! 1.00!
TKE! 1.04!
Dynamic Wong-Lilly! 1.13!
LASS! 1.26!



Bottom Boundary Conditions 



Vertical Velocity z = 10 m!

•  Differences in the vertical velocity patterns are most 
distinct in the near-wall region!

•  Smaller resolved scales observed in GLASS!

LASS! DWL!


