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Backgrounds

¢ The Gray-zone problem of the SGS turbulence model ¢

FROM “the theoretical view”
Two traditional numerical modeling methods of turbulent flows according to A//

(Wyngaard 2004)
[: the scale of energy-containing turbulence

Larger A: the scale of the spatial filter used in Eq. of motion Smaller
scale € > scale
A>> | A~ A<<] -
Mesoscale modeling LES

No SGS model designed
for this scale!

: all the turbulence is
parameterized by so-called
PBL parameterization.

: Only small-scale eddies
are parameterized
(A in the inertial subrange).

= A~ [: “Terra Incognita” or “Gray zone” (NWP terminology)

TO “a practical view”
The bidirectional consequences of the gray-zone problem according to the SGS
vertical transport model used (Honnert et al. 2011; LeMone et al. 2013; Ching et al. 2014)

W_¢A — EAéA =K a¢ ! FNL (1) Term for local (L) transport by small eddies
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Simulations at the gray-zone resolution show that using the SGS models

with term (2) without term (2)
(e.g., nonlocal PBL schemes) (local PBL schemes; LES SGS models)
=» Overestimated SGS transport Underestimated SGS transport €=
=>» Excessive diffusion Remaining instability €=
=» Too weak resolved motions Too strong resolved motions €

Between?!

=» The question is how to decrease modeled SGS energy for the nonlocal PBL
schemes (or increase it for the local schemes) While leaving an accurate amount of
energy for resolved motions!
=» How to decrease the SGS energy? By reducing the SGS NL transport term?

e Resolution dependency of the SGS nonlocal transport profile e

Method (Honnert et al. 2011; Dorrestijn et al. 2013; Shin and Hong 2013)

1. Benchmark LES for A ;s = 25 m and horizontal domain D? = 8% km?.

2. Through spatial filtering, the reference fields for resolved and
SGS transport are calculated for A: A, < A< D.

3. By conditional sampling using vertical velocity and a passive
scalar (Couvreux et al. 2010), the SGS transport is decomposed
into nonlocal (NL) and local (L) SGS transports.
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Results — Notes for a simple parameterization
v’ The role of NL transport: Surface-layer cooling, Mixed-layer heating, and Entrainment. A\
v The basic role is kept for different A.

¢ In this study: simplification of the problem e

A parameterization is designed to “force” the SGS vertical transport to follow
the resolution dependency, and its effects are investigated for convective
boundary-layer simulations at gray-zone resolutions.

Evaluation

A simple parameterization

e Representation of vertical heat transport in CBLs e
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aZ (2) Term for nonlocal (NL) transport by large eddies

(1) (2)
Vertical diffusivity used in conventional PBL schemes
\ 7 . (i.e., used for A >> /)
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(1) Local transport K,(A.)=K, ... P (A)

(2) Nonlocal transport F]\éL — <W’9’>NL (2.)- P]\V,f (A*)
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weY" (z) A linear profile

~ fit to the LES-derived
~ NL transport profile

(cf. Figure in the above
section)

Resolution dependency

functions for SGS heat transport
Honnert et al. (2011) for
total (NL + L) SGS heat transport;
Shin and Hong (2013) for
its decomposition into NL and L parts
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NOTE The SGS NL transport profile only depends on
the external forcing (surface heating and mean wind
shear), as it is fit to the domain-averaged LES profile.
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More details in Shin and Hong (2014)

e Experimental setup — Idealized simulations e

* Model: LES version of WRFV3.5.1

* Forcing: <w’'0’>sc=0.2Kms™; U,=10ms™

* Initial © profile: 6 = 300 K for z <925 m; Inversion strength = 0.053 K m™

* Table 1: SGS turbulence models, horizontal grid size, horizontal domain size

Vertical Horizontal SGS Grid size (m) Horizontal
SGS model model domain (km?)
Benchmark LES 3D TKE (Deardorff 1980) 25 82
GZ Reference Derived from the Benchmark LES | 250, 500, 1000 82
NEW NEW 3DTKE 250, 500, 1000 82, 162, 322
OLD YSU (Hong et al. 2006) 3DTKE 250, 500, 1000 82, 162, 322

: The simple NEW model is evaluated against the LES and gray-zone (GZ) reference data, and
compared with a conventional nonlocal PBL parameterization (OLD).

e Results ¢

1. Mean profiles Black - experiment, Gray - LES
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v" Improvement in the entrainment and v" No degradation or improvement in <U>

the inversion strength

2. Grid-size dependency of resolved, SGS, and total (resolved + SGS) transports
— LES e—e NEW o--::0 OLD RED - resolved, Blue - SGS, Black — total
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v" The OLD nonlocal scheme (o----0) overestimates the SGS transport, and suppresses
resolved motions (cf. Honnert et al. 2011; LeMone et al. 2013; Ching et al. 2014).

v The NEW model (e—e) improves the resolution dependency of the SGS transport,
since P(A) functions fit to the LES results are used.

3. Resolved motions
Energy spectrum
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A =1000 m| NOTE For A < 6-7A, the NEW & OLD

10 experiments are affected by the 6t"-order

numerical diffusion due to the 5%-order

advection scheme (cf. Skamarock 2004).
For a better comparison, the reference

—EEE« fields (gray) are filtered by a 6t"-order

' numerical filter.
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v The resolved energy are still underestimated in the NEW, especially at A = 1000 m.

Summary and Discussions

e The CBL simulations are improved by using the nonlocal transport profile fit to
the LES and the resolution dependency functions in the SGS model (as expected).
e The new algorithm introduced here is based on the empirical fitting and
corresponding numerical parameters. Accepting the algorithm as a complete
scheme or not might be another part of the “gray-zone” problem.
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