21st Symposium on Boundary Layers and Turbulence, Leeds, UK

Can we produce realistic boundary layer turbulence by coupling large-eddy simulations with mesoscale model data?

Rieke Heinze Lennart Böske Siegfried Raasch

Christopher Moseley Bjorn Stevens

Session: Theoretical and practical issues associated with multi-scale simulations 11^{th} June 2014

Universität

Hannover

Setup

Results

Conclusions

HOPE: HD(CP)² Observational Prototype Experiment

$HD(CP)^2$

Main goal:

Build and run a climate/NWP model with very high resolution (Δx≈100m): ICON-LES

Sub-project HOPE:

April-May 2013 centered around Jülich Forschungszentrum

Results

Conclusions

HOPE: HD(CP)² Observational Prototype Experiment

 $HD(CP)^2$

High definition clouds and precipitation for advancing climate prediction

Main goal:

Build and run a climate/NWP model with very high resolution (Δx≈100m): ICON-LES

Sub-project HOPE:

April-May 2013 centered around Jülich Forschungszentrum

Equipment

- Remote sensing instruments (lidars, radars, microwave radiometers)
- Radiosondes
- EC-stations
- Meteorological tower
- Radiation measurements

Introduction Setup Results

Conclusions

Models and large-scale forcing

- LES models: PALM and UCLA-LES
 - Δ = 50 m, t = 72h (24-26 April 2013)
 - Prescribed $\theta(t)$ and q(t) at surface
 - Initial profiles from large-scale forcing
 - Two-moment, warm microphysics
- Large-scale hor. advection:

COSMO-DE analysis data (2°x2° mean)

• Large-scale vert. advection:

$$\left. \frac{\partial \varphi}{\partial t} \right|_{\rm SUB} = -w_{\rm LS} \frac{\partial \varphi}{\partial z}$$

• Geostrophic wind: $\vec{v}_{\rm g}(t)$

Hannover

100

24-26 April – as seen by remote sensing instruments

Boundary layer depth

 z_i : height where $\operatorname{Ri}_{b} = \frac{g}{\theta_{v0}} \frac{\theta_v - \theta_{v0}}{u^2 + v^2} z$ is larger than 0.25 (e.g. Richardson et al., 2013) 2400 -PALM 2000 UCLA 1600 z_i (m) COSMO 1200 RS (KIT) 800 + DIAL (KIT) 400 POLLY (LA) 0 6 12 72 18 24 30 36 42 48 54 60 66 Time (UTC)

 \Rightarrow LES produce daily cycles in reasonable agreement with observations

Introduction Setup

Results

Clouds and precipitation

- Deeper cloud layers on 26/4 can be simulated by both LES models
- Shallow cloud layer on 25/4 is missing (completely) in LES

Introduction Setup

Results

0.0300

0.0240

0.0180 0.0121

0.0061

0.0001

0.0300 0.0240

0.0180

0.0121

0.0061

0.0001

0.0300

0.0240

0.0180

0.0121

0.0061

0.0001

Clouds and precipitation

- Deeper cloud layers on 26/4 can be simulated by both LES models
- Shallow cloud layer on 25/4 is missing (completely) in LES
- Peak in rain water at • same time as in forcing
- LES were run with warm-• microphysics only
- \Rightarrow Clouds are a bit tricky

eibniz Universität

Hannover

- Quantities: q_c and q_r
- Note: large-scale forcing from 0.25°x0.25° COSMO mean used

Conclusions Introduction Setup Results 2400 Specific cloud wate 12 q_c (g kg⁻¹) 2000 10 0.70 -PAI M 1600 UCLA z (km) z_i (m) 0.56 COSMO 0.42 1200 RS (KIT) 0.29 DIAL (KIT) 800 POLLY (LA) 0.15 0.01 400 12 18 24 30 36 42 48 54 60 66 72 0 time (hours since 2013-04-24, 0 UTC) 12 18 24 30 36 42 48 54 60 66 72 Time (UTC) Long-term LES approach gives Shallow cumulus clouds could not • reasonable daily cycles be simulated Observed situations can Strong dependence on largeprincipally be reproduced scale advective forcing

 \Rightarrow Long-term LES approach works - but LES remain a virtual laboratory

Outlook:

Leibniz

Universität Hannover

- In-depth evaluation of large-scale forcing dependency
- Heterogeneous surface

Supplementary material

Large-scale forcing tendencies

Large-scale horizontal advection:

Large-scale vertical advection:

 $\left. \frac{\partial \varphi}{\partial t} \right|_{\text{LSA}} = -\left(u_{\text{LS}} \frac{\partial \varphi_{\text{LS}}}{\partial x} + v_{\text{LS}} \frac{\partial \varphi_{\text{LS}}}{\partial y} \right)$

Surfaces fluxes

Leibniz

10

100

Universität

Hannover

Surface sensible (shf) and latent (lhf) heat fluxes

 \Rightarrow LES fluxes are representative for HOPE site

Liquid water path

 \Rightarrow Simulated boundary layers are colder than in observations

Sensitivity to relaxation time scale τ

 \Rightarrow Virtually no dependence on relaxation time scale

Setup for animation

Note: large-scale forcing from 0.25°x0.25° COSMO mean

Results are sensitive to large-scale forcing

Setup for animation

Note: large-scale forcing from 0.25°x0.25° COSMO mean

Results are sensitive to large-scale forcing