Turbulent Scales in the Boundary Layer: A Year-Long Large-Eddy Simulation

Jerôme Schalkwijk, Harm Jonker, Pier Siebesma

YOGA: A Year-Long Large-Eddy Simulation

Jerôme Schalkwijk (1), Harm Jonker (1), Pier Siebesma (1,2)

1) Delft University of Technology; 2) KNMI (Royal Netherlands Meteorological Institute)

Topics

- Year of GALES (YOGA)
 - Set-up
 Driven by regional model
 - Computational aspects
 Continuous year-long simulation using GPU Acceleration

Turbulence Spectra Do we see a spectral gap?

Roel Neggers, Pier Siebesma and T. Heus, BAMS, sept 2012

YOGA set-up (2)

Continuous (un-interrupted) LES run

Jan 1 – Dec 31; 2012, Cabauw, the Netherlands.

YOGA runs

Model grid

Turbulence

Large scales

Webcam

YOGA-HR $\sim (5 \text{ km})^2 \times 3 \text{ km}$ 25m x 25m x $\sim 10 \text{ m}$

YOGA ~(25 km)² x 25 km 100m x 100m x ~30m

YOGA: A Continuous Year Of GALES

YOGA: Computational Numbers

Year of GALES & Year of GALES - HR

2 Non-stop year-long runs

	YOGA	YOGA-HR
Grid cells	256 ³ (16M)	194 ³ (7M)
Time steps	7M	16M
3D fields (if stored)	~2.5 Pc	etaByte
Wall clock time	?????	

How?

GALES

GPU-**resident** Atmospheric Large-Eddy Simulation

GALES

GPU-**resident** Atmospheric Large-Eddy Simulation

YOGA: A Continuous Year Of GALES

High-Performance
Simulations of
Turbulent Clouds on a
Desktop PC:
Exploiting the GPU

Schalkwijk, Griffith, Post & Jonker

March 2012

Result:

Time per time-step at 256³

24 CPUs: 2.6s

48 CPUs: 1.9s

1 GPU: 0.8s

YOGA: Computational Numbers

Year of GALES & Year of GALES - HR

 2 Non-stop runs of GPU-resident Atmospheric Large-Eddy Simulation

	YOGA	YOGA-HR
Grid cells	256 ³ (16M)	194 ³ (7M)
Time steps	7M	16M
3D fields (if stored)	~2.5 PetaByte	
Wall clock time	5M seconds (~ 2 months)	

YOGA Year of GALES & Year of GALES - HR

YOGA

Year-averaged time-series

- Good agreement
- YOGA-HR better resolves diurnal cycle of u

YOGA: A Cont

Van der Hoven Energy Spectrum

Power spectrum of variance in 100m wind

Qualitative correspondence

Spectral gap is visible!
But less pronounced and narrower

Power Co-Spectra

Energy spectrum of turbulent transport

Concluding remarks

- It is now computationally feasible to perform >year LES runs
 Statistics vs case studies.
- LES is capable of handling extremely diverse situations
 From stable boundary layer to deep convection in 1 run
- Qualitative spectrum of van der Hoven (1957) can be reproduced Including presence of "spectral gap"
- Spectral gap is also present in temperature/humidity co-spectra But is very large (~4hrs)
- YOGA dataset will be made available

Thank you for your attention Questions?

