Turbulent Scales in the Boundary Layer: A Year-Long Large-Eddy Simulation

Jerôme Schalkwijk, Harm Jonker, Pier Siebesma
YOGA: A Year-Long Large-Eddy Simulation

Jerôme Schalkwijk (1), Harm Jonker (1), Pier Siebesma (1,2)
1) Delft University of Technology; 2) KNMI (Royal Netherlands Meteorological Institute)
Topics

- Year of GALES (YOGA)
 - Set-up
 Driven by regional model
 - Computational aspects
 Continuous year-long simulation using GPU Acceleration
- Turbulence Spectra
 Do we see a spectral gap?
YOGA set-up (1)

Embedment in Large-Scale Weather model

Roel Neggers, Pier Siebesma and T. Heus, BAMS, sept 2012

RACMO

SCM

LES

supersite

CESAR observational supersite

Horizontal advection

LS subsidence
YOGA set-up (2)
Continuous (un-interrupted) LES run

Jan 1 – Dec 31; 2012, Cabauw, the Netherlands.
YOGA runs
Model grid

Webcam

YOGA-HR
~(5 km)2 x 3 km
25m x 25m x ~10m

YOGA
~(25 km)2 x 25 km
100m x 100m x ~30m

Turbulence

Large scales

YOGA: A Continuous Year Of GALES
YOGA : Computational Numbers
Year of GALES & Year of GALES - HR

- 2 Non-stop year-long runs

<table>
<thead>
<tr>
<th></th>
<th>YOGA</th>
<th>YOGA-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid cells</td>
<td>256^3 (16M)</td>
<td>194^3 (7M)</td>
</tr>
<tr>
<td>Time steps</td>
<td>7M</td>
<td>16M</td>
</tr>
<tr>
<td>3D fields (if stored)</td>
<td>~2.5 PetaByte</td>
<td></td>
</tr>
<tr>
<td>Wall clock time</td>
<td>????</td>
<td>????</td>
</tr>
</tbody>
</table>

- How?
YOGA: A Continuous Year Of GALES

GALES

GPU-resident Atmospheric Large-Eddy Simulation

Acceleration

CPU

GPU

Advection

Surface

Routine 3

Routine 5

Routine 6

Routine 4
GALES

GPU-resident Atmospheric Large-Eddy Simulation

CPU

GPU

Residency

- Advection
- Surface
- Routine 3
- Routine 4
- Routine 5
- Routine 6

YOGA: A Continuous Year Of GALES
High-Performance Simulations of Turbulent Clouds on a Desktop PC: Exploiting the GPU

Schalkwijk, Griffith, Post & Jonker

March 2012

Result:
Time per time-step at 256^3
24 CPUs: 2.6s
48 CPUs: 1.9s
1 GPU: 0.8s
YOGA : Computational Numbers
Year of GALES & Year of GALES - HR

- 2 Non-stop runs of
 GPU-resident Atmospheric Large-Eddy Simulation

<table>
<thead>
<tr>
<th></th>
<th>YOGA</th>
<th>YOGA-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid cells</td>
<td>256^3 (16M)</td>
<td>194^3 (7M)</td>
</tr>
<tr>
<td>Time steps</td>
<td>7M</td>
<td>16M</td>
</tr>
<tr>
<td>3D fields (if stored)</td>
<td></td>
<td>~2.5 PetaByte</td>
</tr>
<tr>
<td>Wall clock time</td>
<td></td>
<td>5M seconds (~ 2 months)</td>
</tr>
</tbody>
</table>
YOGA
Year of GALES & Year of GALES - HR
YOGA
Year-averaged time-series

- Good agreement
- YOGA-HR better resolves diurnal cycle of u

$z = 140m$
Van der Hoven Energy Spectrum

Power spectrum of variance in 100m wind

- Qualitative correspondence
- Spectral gap is visible!
 But less pronounced and narrower

Van der Hoven (1957)
Power Co-Spectra
Energy spectrum of turbulent transport

q_t

θ_l

Gap Scale: 3-4hr

ω (Hz)

$E_{\text{avg}}(\omega)$

z (m)
Concluding remarks

- It is now computationally feasible to perform >year LES runs. Statistics vs case studies.

- LES is capable of handling extremely diverse situations. From stable boundary layer to deep convection in 1 run.

- Qualitative spectrum of van der Hoven (1957) can be reproduced including presence of “spectral gap“.

- Spectral gap is also present in temperature/humidity co-spectra but is very large (~4hrs).

- YOGA dataset will be made available.
Thank you for your attention
Questions?