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1. Motivation
The current approach to multi-scale atmospheric modeling is to use reanalysis data to provide boundary conditions to a mesoscale model, such as the
Weeather Research and Forecasting (WRF) model. Grid nesting is used within the mesoscale model to provide higher-resolution simulations of a geographic
region. The mesoscale model provides boundary conditions to a traditional computational fluid dynamics model, which provides high-resolution simulations.
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2. Challenges with Grid Nesting 3. Alternative Grid for Complex Terrain
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4. Validation and Current Work
Instantaneous Velocity Magnitude ' ' ' : : :
200 F—— . e e L IOP 3 from the Joint Urban 2003 field campaign IBM-WREF is currently being extended to function seamlessly

IS simulated, and results are compared with
observations. A domain with Oklahoma City
terrain is nested within a parent domain with flat
terrain. Horizontal grid spacing is 2 m with
259x340x170 points on the urban domain. The
3D Smagorinsky turbulence closure is used.

within the WRF framework. Current developments include:

* Development of a new boundary condition at the immersed
terrain surface based on Monin-Obukhov similarity theory

* Development of an interface to nest IBM-WRF grids within
native terrain-following WRF grids

* Initialization and forcing of IBM domains using standard
meteorological and land-surface data
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Common performance for velocity using: T
metrics used to assess model Scalar Concentration Gt sl
skill indicate that IBM-WRF olU u, 2/z,
performs equal to or better FACZorFACS — FB MG NMSE  SAA P = The test case of a neutral atmospheric
than commonly used CFD ertect Model X o » » n Kz boundary layer shows excellent
models. agreement between IBM and WRF
IBM-WRF 1.0 -0.24 0.82 0.18 26.2 U Z + Z . . I t th t th rf

FACx = Predictions within a factor of X (Velocity Magnitude) (FAC2) U . _*ln( 0 ) usSing simiiarity eory a € Surface.
FB = Fractional bias - 7 The 3D Smagorinsky turbulence
MG = Geometric mean bias IBM-WRF 0.53 -1.54 0.32 28.70 .
NMSE = Normalized mean square error (Scalar Concentration) (FACS) 0 closure is used here.

SAA = Scaled average angle
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