

Enabling high-resolution simulations of atmospheric flow over complex terrain in the WRF model K.A. Lundquist¹, J.D. Mirocha¹, J. Bao², D.J. Wiersema², and F.K. Chow²

¹Lawrence Livermore National Laboratory, ²University of California, Berkeley

Motivation

The current approach to multi-scale atmospheric modeling is to use reanalysis data to provide boundary conditions to a mesoscale model, such as the Weeather Research and Forecasting (WRF) model. Grid nesting is used within the mesoscale model to provide higher-resolution simulations of a geographic region. The mesoscale model provides boundary conditions to a traditional computational fluid dynamics model, which provides high-resolution simulations.

 $\Delta X = 12.5 \text{ km}$

3.

ΔX = 100 m

 $\Delta X = 20 \text{ m}$

 $\Delta X = 5 \text{ m}$

2. Challenges with Grid Nesting

The current approach to multi-scale modeling is inadequate because the terrain-following coordinates used by mesoscale models introduce numerical errors when complex terrain is present.

Immersed Boundary **Terrain-Following Grid** Method Grid IBM adds a forcing term to the for the presence of terrain.

Alternative Grid for Complex Terrain The immersed boundary

method is a non-conforming gridding technique that can be used to eliminate errors arising from skewed grids, as demonstrated in the case study in panel 2.

Conservation equations for mass, momentum, and scalars $\partial_{t} \rho + \nabla \cdot (\rho \mathbf{V}) = 0$ $\partial_t \mathbf{V} + \mathbf{V} \cdot \nabla \mathbf{V} = -\alpha \nabla p + \nu_t \nabla^2 \mathbf{V} + \mathbf{F}_B + \mathbf{F}_{IBM}$ $\partial_t \varphi + \mathbf{V} \cdot \nabla \varphi = v_t \nabla^2 \varphi + F_{\varphi} + F_{IBM}$

Interpolant for the IBM

Imposing immersed boundary conditions Dirichlet Neumann

Max velocity 1.7 m/s

80 Max velocity 3.8 e-5 m/s

Validation and Current Work 4.

Common performance metrics used to assess model skill indicate that IBM-WRF performs equal to or better

IOP 3 from the Joint Urban 2003 field campaign is simulated, and results are compared with A domain with Oklahoma City observations. terrain is nested within a parent domain with flat terrain. Horizontal grid spacing is 2 m with 259x340x170 points on the urban domain. The 3D Smagorinsky turbulence closure is used.

Scalar Concentration

FAC2 or FAC5 SAA NMSE FB MG

IBM-WRF is currently being extended to function seamlessly within the WRF framework. Current developments include:

- Development of a new boundary condition at the immersed terrain surface based on Monin-Obukhov similarity theory
- Development of an interface to nest IBM-WRF grids within native terrain-following WRF grids
- Initialization and forcing of IBM domains using standard meteorological and land-surface data

Surface fluxes of momentum are parameterized using Monin-Obukhov similarity theory. A Neumann boundary condition is set for velocity using:

The test case of a neutral atmospheric

than commonly used CFD models.

FACx = Predictions within a factor of X FB = Fractional bias MG = Geometric mean bias NMSE = Normalized mean square error SAA = Scaled average angle

boundary layer shows excellent agreement between IBM and WRF using similarity theory at the surface. The 3D Smagorinsky turbulence closure is used here.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.