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Kinetic wind energy is harnessed by converting to mechanical energy via the
turbine rotor and then into electrical energy through the generator:

Wind Energy if fundamentally derived from an extension of kinetic energy
formulal

where the mechanical output power (P) is a function of the performance
coefficient of the turbine C,, the density of air (} ), the area swept by the
turbine projected in the direction of the wind (A) and wind-speed (u).
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It is worth considering that Cp is limited by Betz limit of 59.3% efficiency however an
important fact that is often missed is that this is strictly speaking only applicable

In laminar kinetic mass flow systems.
(N.B. Turbulence and Pressure drop over the blades are not considered!)

As wholly laminar environments are rarely present in real world scenarios it is
evident that further investigation is required when trying to bound the likely
coefficient of performance in a turbulent environment.

This model also assumes instantaneous response i.e. zero inertia model! This has a
tendency to make large power prediction errors. +/- 30% error is not uncommon
for microturbines in turbulent urban environments.

A
- %
e

AR AMERICAN METEOROLOGICAL SOCIETY




SCHOOL OF
ELECTRICAL AND

wcronc - INtroduction to Wind Energy

ENGINEERING

Known power prediction issues;

A
A
A
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A
A

Accuracy of power curves (standard dev and error is not published)
Data recording issues (averaging of scalars expressed as vectors)
Cup anemometers (values under range recorded as 0)

Statistical Distortion due to excess 0s.

Quantification of turbulence (There are known issues with TI)

Lack of transient response models
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DUBLex (Dublin, Urban Boundary Layer Experiment) UCD, DIT and NUI Maynooth.
High resolution data for multiple purposes e.g.,@@nitoring / temp / moisture /

wind speed

Has multiple applications air quality / litter dumping / temp. hot spots / urban wind
generation.

A mast installation is on top of DIT Kevin Street for approximately 1 year also
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From this industrial standard 10 minute
bins are drawn based on longitudinal
values of mean Tl and a proposed newg
metric T This metric essentially
measures how noisy a signal is.

T += unbounded Fractal Dimension by Fourier means
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Data Acquisition and Statistical

Summarisation

A Df=lis effeCtively 0% Simulated Wind Speed Scenario
turbulence by the [ 7
metric

A However the current Tl /
metric would classify 5 el

this sample as having
31% turbulence

4 —#—Sample wind speeds

—@—mean wind speed =4 m/s

Wind Speed m/s

standard deviation = 1.24 m/s

A The current Tl metric

° ot Tl = 0.31 (appears unrealistic)
doeS not a”OW fOI‘ Df =1 (totally persistant)
trends within the wind 2
speed sample

1

A N.B.the T, metric does
not cater for the spread 0
. . 0] 2 4 [5) 8 10
Of the erratIC Slgnal Time {minutes)

A Thereforethere is a need for both metrics when describing a wind speed signal
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Generation of Artificial wind speed signals based on TI, Ty;and mean speed
If we consider a 10 minute bin of 10Hz data summarised to mean, Tl and Ty

Question:

What can we do with it?

It is pointless in proposing a new metric (Ty) unless it has some practical
application!

So lets consider mixing Gaussian statistics with non Gaussian statistics!
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Consider a series of 600 random numbers (n,) between 0-1 subjected to
the following convolution () in the frequency domain.

[y (D] = =77 @ t [ (D)]

Where: Ty (Turbulent Fourier Dimension)=(5-q)/2

Frequency domain equivalent with i indexing filter

[U:(@)] = =577 [ (@)

For this example lets take a T, of 1.8, a Tl of 0.45 (45%), and a u mean of
7.5m/s
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Generating a fractal curve of

known T gives the TDf = 1.80 0 mean fractal curve
following graph. ' ' ' ' '

um/s

10

Fractal noise is scale

invariant and as such has
the same fractal 6
properties at any scale.

4
Note the amplitude is not

: 2

defined!

_ 0
If we zoom in the concept

becomes clearer! -
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Zooming in shows the fractal

self symmetry within the TDf = 1.80 0 mean fractal curve
curve. 20.05¢ ' ' ' |
~0.04
However this is not scaled 0.03
and as such is of no use 0.02 | )
on its own. A
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IG

Now that the curve is
normalised around zero a
known spread can be
applied.

Standard dev is = mean x Tl

So multiply across to give the
next slide

TDf = 1.80 normalised 0 mean fractal curve

u
IS
s 10
8
6
4
2
0 m ‘M /‘I\Mm/‘ J\w.l\/\u A Mﬂ ) /L,n /Wr“« A\/‘W\]\J‘f\ |
R (AT P Y Vil
-2
0 100 200 300 400 i 500 600
ime In"seconds

AMERICAN METEOROLOGICAL SOCIETY



Now that the curve has a
spread indicative of
the standard

deviation it is now
time to add in an

average.

TDf =1.80 Tl =0.45 Tl spread fractal curve
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This artificial wind speed has

the same statistical
properties as an original
recording of T, Tl and u
mean.

Early comparisons have
shown this model to have
a 97% statistical accuracy
compared to a frequency
bin equivalent.

However this is not over the
full data set

um/s

Fractal curve with TDf =1.80, Tl =0.45, Umean=7.5
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Measured Data Simulated Data

Meanu =3.7650 m/s Meanu =3.7653 m/s
Turb. Inten. =0.3478 Turb. Inten. =0.3476

TDf =2.0888 TDf =2.0790
Fractal R2 Corr.  =0.9706 Fractal R2 Corr.  =0.9754
Fractal RMS err  =1.3064 Fractal RMS err =1.2677
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