On the discrepancy in simultaneous observations of C_{T^2} by \textbf{scintillometers}, sonics and unmanned aircraft

- Miranda Braam (DWD-WU)
- Frank Beyrich (DWD Lindenberg)
- Arnold Moene (WU Wageningen)
- Jens Bange (EKUT Tübingen)
- Andreas Platis (EKUT Tübingen)
- Sabrina Martin (TUB Braunschweig)
- Björn Maronga (LUH Hannover)
On the discrepancy in simultaneous observations of C_T^2 by scintillometers, sonics and unmanned aircraft

Previous results: LITFASS-2003

Meijninger et al. 2006
Why? On the discrepancy in simultaneous observations of C_T^2 by scintillometers, sonics and unmanned aircraft

Previous results: LITFASS-2003

C_n^2 \uparrow C_T^2 \uparrow C_n^2 \uparrow

$H_{\text{LAS-MWS}}$ $[\text{W m}^{-2}]$

$H_{\text{source-area}}$ $[\text{W m}^{-2}]$

$y = 1.07x$

$R^2 = 0.83$

H_{landuse}

Meijninger et al. 2006
Why? On the discrepancy in simultaneous observations of C_T^2 by scintillometers, sonics and unmanned aircraft

Previous results: LITFASS-2003

C_n^2 C_n^2 C_n^2

C_T^2 C_T^2 C_T^2

MOST

H H

Fraction landuse $\bar{H} < \bar{H}$

Meijninger et al. 2006
How? On the discrepancy in simultaneous observations of C_T^2 by scintillometers, sonics and unmanned aircraft

New campaign: LITFASS-2009

$z_{\text{eff}} = 63$ m

$z_{\text{eff}} = 43$ m
On the discrepancy in simultaneous observations of C^2_T by scintillometers, sonics and unmanned aircraft
On the discrepancy in simultaneous observations of C_T^2 by scintillometers, sonics and unmanned aircraft.
What? On the *discrepancy* in simultaneous observations of \(C_T^2 \) by scintillometers, sonics and unmanned aircraft

First results: LITFASS-2010

\[C_T^2 \text{ aircraft} > C_T^2 \text{ EC} \]

Van den Kroonenberg *et al.* 2012
Conclusions so far...

LITFASS-2009

C_I^2 aircraft $\approx 2 \ C_I^2$ LAS

One day
“quick overview”

LITFASS-2010

C_I^2 aircraft $\approx 2 \ C_I^2$ EC

No C_I^2 LAS
This study
On the discrepancy of C_T

- More days
- More validation data (EC & LAS)
- Normalizing to $z = 50$ m

Elaborate data processing
- Saturation correction
- $C_n^2 \rightarrow C_T^2$: Humidity correction
- Synchronising averaging times
- Path-weighting function of LAS
- Mathematical methods
Elaborate data processing normalizing to $z = 50$ m
Results

normalizing to $z = 50$ m

$C_T^2 \text{[K}^2 \text{m}^{-2}\text{]}$

![Graph showing data from LITFASS-2009 and LITFASS-2010](image)

LITFASS-2009

LITFASS-2010

- EC 50m
- EC 90m
- LAS 43.3m
- LAS 63.3m
- aircraft
Elaborate data processing

C_n^2: Saturation correction

- **Clifford correction method**
 - *Kleissl et al.* 2010
 - *Clifford et al.* 1974

- **LAS:**
 - 43 m: +16%
 - 63 m: +11%
Elaborate data processing

\[C_n^2 \rightarrow C_T^2: \textbf{Humidity correction} \]

\[C_n^2 = A_T C_T^2 + A_{Tq} C_{Tq} + A_q C_q^2 \]

1. Extra Microwave Scintillometer (MWS)
 two wavelength method
 - \(\text{cov}(\ln I_{LAS}, \ln I_{MWS}) \) (Lüdi et al, 2005)
 - \(R_{Tq} \) (Hill)

2. Extra EC (Moene, 2003)
 - \(R_{Tq}, \sigma_T \) and \(\sigma_q \)
 - \(R_{Tq}, \beta \)
 - \(\beta \)

LITFASS-2009
@ 43 m

LITFASS-2009
LITFASS-2010
@ 43 m
@ 63 m
Elaborate data processing

\[C_n^2 \rightarrow C_T^2: \text{Humidity correction} \]

\[C_n^2 = A_T C_T^2 + A_{Tq} C_{Tq} + A_q C_q^2 \]

1. Extra MWS
 - two wavelength method
 - cov(ln \(I_{LAS} \), ln \(I_{MWS} \))
 - \(R_{Tq} \)

2. Extra EC
 - \(R_{Tq}, \sigma_T \) and \(\sigma_q \)
 - \(R_{Tq}, \beta \)
 - \(\beta \)

LAS: +5%
(relative to standard Bowen correction)
Elaborate data processing
Synchronizing averaging times

Normally:
10 or 30 min
approx. 2 min

LAS:
- 43m: -1%
- 63m: -4%
- uncertain

LITFASS-2009
This study

On the discrepancy of C_T

- Other days
- Extra validation with EC
- Normalizing to $z = 50$ m
- Elaborate data processing
 - Saturation correction
 - $C_n^2 \rightarrow C_T^2$: Humidity correction
 - Synchronising averaging times
 - Path-weighting function of LAS
 - Mathematical methods
 - Effect of flight speed

C_T^2 aircraft

$\approx 2C_T^2$ LAS

C_T^2 LAS +15%

C_T^2 LAS +5%

C_T^2 LAS 0%
Elaborate data processing path weighting function LAS
Elaborate data processing path weighting function LAS

LITFASS-2009
UAV: −6%

LITFASS-2010
UAV: +10%
Elaborate data processing
other mathematical methods

- **Standard procedure**
 van den Kroonenberg *et al.* 2012
- **Spectrum procedure**
- **Wavelet procedure**
 Moene & Gioli 2008

UAV: −14%
UAV: −4%
This study
On the discrepancy of C_T

- Other days
- Extra validation with EC
- Normalizing to $z = 50$ m

Elaborate data processing
- Saturation correction
- $C^n_T \rightarrow C^2_T$: Humidity correction
- Synchronising averaging times
- Path-weighting function of LAS
- Mathematical methods

$C_T^2 \text{ aircraft } \approx 2C_T^2 \text{ LAS}$

$C_T^2 \text{ LAS } +15\%$

$C_T^2 \text{ LAS } +5\%$

$C_T^2 \text{ LAS } 0\%$

$C_T^2 \text{ aircraft } \pm 10\%$

$C_T^2 \text{ aircraft } \pm 15\%$
Results

EC 50m
EC 90m
LAS 43.3m,
LAS 63.3m,
aircraft,

\[C_T^2 \text{[K}^2 \text{m}^{-2/3}] \]

LITFASS-2009 LITFASS-2010
Results
all corrections/processing implemented
Effect of translation speed of sensor

- High-resolution LES of LITFASS area ($\Delta x = 3.1$ m, $\Delta z = 2$ m)

- Virtual sensors at different speeds:
 - 0 ms$^{-1}$: virtual sonic
 - 5-33 ms$^{-1}$: virtual UAV
 - ∞ ms$^{-1}$: virtual LAS

- Does structure parameter depend on choice of platform translation speed?
Effect of translation speed of sensor

Extra variance due to temporal development of turbulence
Conclusions

- C_T^2 aircraft > C_T^2 LAS > C_T^2 EC also valid at other days

- More elaborate data processing does not decrease differences significantly

- Additional experiments are needed to better understand line-mean C_T^2 and link with scintillometer signal