

Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Christopher Poëtte^{1,2}, Barry Gardiner^{1,2}, Sylvain Dupont^{1,2}, Yves Brunet^{1,2}, Margi Böhm^{3,4}, Ian Harman⁴, John Finnigan⁴ & Dale Hughes⁴

- 1. INRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon, France
- 2. Bordeaux Sciences Agro, UMR 1391 ISPA, F-33170 Gradignan, France
- 3. Institute of Applied Ecology, Faculty of ESTeM, University of Canberra, Australia

4. Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Canberra, Australia

Context & Motivations

Wind damage is the most important disturbance to European forests.

Example from Storm Klaus in 2009:

- Directly destroyed 43.1 Mm³ timber (14% of the standing volume)
- Direct cost to sector > €1 billion, total economic loss ~ €3 billion

Key Questions:

- Does fragmentation of forest landscape induce/increase turbulence?
- Is there a specific forest configuration that mitigates/enhances turbulence formation?

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Fragmented landscape Experiments

The Different Configurations

	Configurations				
Number	1	2	3	4	5
Forest Width	8h	8h	8h	8h	8h
Gap Width	5,1h	10,2h	15,3h	20,4h	30,6h
Ratio Gap/Forest Width	~ 1/2	~1	~ 3/2	~ 5/2	~ 7/2

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Wind Tunnel (WT) The Pye Lab. Wind Tunnel, CANBERRA, Australia

Diagram of the Pye Lab Wind Tunne! (taken from Böhm (2000), modified from Wooding (1968))

Dimensions of the working section:

- ▶ 16.4 m long
- ▶ 0.65 m tall
- ▶ 1.78 m wide

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Wind Tunnel (WT) The Black Tombstones Model

Pegs

Tombstones

(Raupach et al., 1986)

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Wind Tunnel (WT) Spatial average

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Wind Tunnel (WT) Laser Doppler Velocimetry (LDV)

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Fragmented landscape Experiments The Different Configurations

Reference: Single Edge - M. Böhm & B. Gardiner, 2013

Fragmented Configurations:

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Fragmented landscape Experiments The Different Configurations

Single Edge

 ~ 1

 $\sim 3/2$

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results

Full development of the flow : Example for the ratio ($\sim 1/2$)

Mean Horizontal Wind Velocity U

-0.06 -0.053 -0.046 -0.039 -0.032 -0.025 -0.018 -0.011 -0.004 0.003 0.01 0.017 0.024 0.031 0.038 0.045 0.052 0.059

Turbulent Kinetic Energy TKE

X/h

$$J_V = \int_z U dz$$

with U, mean horizontal wind velocity at X/h = -21h

Kinetic Energy Normalisation

$$U_V^* = \int_z U^* dz$$

with U^* , friction velocity at X/h = -21h

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results

Mean Horizontal Wind Velocity U over the last EDGE

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results Mean Vertical Wind Velocity W over the last EDGE

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results

Turbulent Kinetic Energy TKE over the last EDGE

0.53 0.56 0.59 0.62 0.65 0.68 0.71 0.74 0.77 0.8 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07 1.1 1.13 1.16 1.19 1.22 1.25 1.2

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results Ratio of Turbulent to Mean Kinetic Energy *TKE/U*²

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

Results Maximum Gust Speed $U/U_V + \sqrt{TKE/U_V^2}$

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability

CONCLUSION & FUTURE WORK

CONCLUSION

- A detail set of Data on Fragmentation of the Landscape is now available
- U at tree top increases with the size of the gaps whereas TKE at tree top decreases
- With a small gap, turbulence intensity is higher but the maximum wind speed is larger with a big gap

CONCLUSION & FUTURE WORK

CONCLUSION

- A detail set of Data on Fragmentation of the Landscape is now available
- U at tree top increases with the size of the gaps whereas TKE at tree top decreases
- With a small gap, turbulence intensity is higher but the maximum wind speed is larger with a big gap

KEY QUESTIONS

- Does fragmentation of forest landscape induce/increase turbulence?
- Is there a specific forest configuration that mitigates/enhances turbulence formation?

CONCLUSION & FUTURE WORK

CONCLUSION

- A detail set of Data on Fragmentation of the Landscape is now available
- U at tree top increases with the size of the gaps whereas TKE at tree top decreases
- With a small gap, turbulence intensity is higher but the maximum wind speed is larger with a big gap

KEY QUESTIONS

- Does fragmentation of forest landscape induce/increase turbulence?
- Is there a specific forest configuration that mitigates/enhances turbulence formation?

FUTURE WORK

- Validation in Fragmented Landscape cases of a large-eddy simulation (LES) model
- Using LES to predict the potential impact and risk levels of fragmentation on forest damage

Thank You For Your Attention

Acknowledgements:

INRA – Aquitaine Region – Labex Cote – CSIRO

Christopher Poëtte - Fragmentation of the landscape: Impact on atmospheric flow and tree stability June 10, 2014

17/17