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Does relaxing the assumption of tidal-locking change the offset in
the observed phase curve of an exoplanet?

If there is no heat transport present in the atmosphere of a planet, the
hottest point (the hotspot) will be at the substellar point: the location on
the planet receiving the most radiation from the host star. Phase curve
observations of transiting exoplanets show that the hotspot can be offset
from the substellar point by up to 502 degrees in longitude [1].

We use a numerical shallow water model to investigate how the hotspot
offset from substellar point changes when a planet is not tidally-locked.
Figure 1 shows steady-state solutions of the model for planets where the
substellar point is moving westwards (a), stationary (b) or eastwards (c).

Conclusions

e The hotspot offset from substellar point is sensitive to both planetary
rotation rate and the speed of the substellar point across the surface.
Figure 2 shows the offset as a function of substellar velocity for three
different planetary rotation rates.

e Retrograde (westward) offsets are more sensitive to substellar velocity
than prograde because Rossby waves move at ~1/3 the speed of Kelvin &
gravity waves.

e The radiative and frictional timescales become more important in
determining the longitudinal offset once substellar velocity exceeds
Kelvin wavespeed c.

e Given the observed phase curve of an exoplanet, measuring the offset
could provide insight into the rotation rate of the planet.
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Figure 1. Left-to-right; steady-state solutions of three shallow-water experiments with the substellar point moving to the west, stationary and to the east.

Coloured contours show the height field, corresponding to temperature in the idealised model. Purple "coldest", yellow "hottest". White contours denote
the position and direction of travel of the forcing. Phase curves are plotted above the maps. Black lines show the hemispheric integral of the height field,

grey lines the integral of the forcing.

The rotation rate here corresponds to MEDIUM in Figure 2, the deformation radius is small enough that rotational effects are pronounced. (a) Westward
substellar motion is dominated by Rossby gyres. (b) The tidally-locked case exhibits a steady-state analogous to a planetary scale Matsuno-Gill solution.
(c) Eastward substellar motion response is dominated by a Kelvin wave-like feature.

Model
The forced shallow water equations we use are
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where ¢ is latitude and ¢ is the substellar longitude, the longitude relative
to the centre of the forcing. In this simple model, height / is a proxy to
temperature, as for other shallow water exoplanet studies [2].

The unforced shallow-water equations permit several waves: Gravity
waves, equatorial Kelvin waves, and Rossby waves [3]. Kelvin waves are
the fastest waves in the system and travel eastward at velocity

c =+/gH.

We perform numerical simulations of these equations, varying rotation
rate Q) and substellar velocity, s = ac, integrating forward until a steady-
state relative to the forcing is obtained. The phase curve of the simulation
is calculated as the hemispheric integral of steady-state height at all
observation longitudes
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Phase curves are calculated and the longitude of the peak (corresponding
to the planetary hotspot) is measured from the substellar point. Figure 1
shows the steady-state height field and corresponding phase curves for
three experiments. Figure 2 shows the relationships between measured
offsets for several experiments with different 2 and «.
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Figure 2. Hotspot offset as a function of substellar velocity (abscissa,
denoted s, measured in multiples of wavespeed c) for three characteristic
planetary rotation rates (coloured lines).

When [s| > ¢, all curves tend to a lagging limit determined by the frictional
timescales . When Is| < c, the offset is flow dependent. For SLOW rotation
(deformation radius larger than planetary radius), the hotspot leads ahead
of the substellar point. When rotation is FAST the hotspot lags behind.
Sample height fields and phase curves that correspond to point data
labelled (a), (b), (c) on the MEDIUM curve can be seen in Figure 1.

The transition from slow to fast regime is different for prograde (eastward)
or retrograde (westward) substellar progression. On fast rotating planets
Rossby waves form. These travel west at approximately 1/3 the speed of
Kelvin and gravity waves. Total westward wave action is therefore slower
than eastward and the hotspot lags at a lower substellar velocity.
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