The Climate Impacts of Hydrofluorocarbons (HFCs): From the Earth's Surface to the Middle Atmosphere

Margaret M. Hurwitz ^{1, 2}, Eric. L. Fleming ^{1, 2}, Feng Li ^{1, 3}, Paul A. Newman ¹, and Qing Liang ^{1, 3}

NASA Goddard Space Flight Center, USA
Science Systems and Applications, Inc., USA
GESTAR, Universities Space Research Association, USA

HFCs Replace the CFCs and HCFCs

- Second-generation replacements for the CFCs and HCFCs, the ozone-depleting substances that caused the 'ozone hole'
- Strong radiative forcers (GWPs of 1,000-10,000)
- Long-lived (atmospheric lifetimes ~20 years)

What might the climate and ozone impacts of HFCs be by 2050?

HFCs Effects Simulated with an Atmospheric CCM

- 2000-2050 simulations with an atmospheric chemistry-climate model (NASA GSFC 2D model, Fleming et al., 2011)
- Includes effects of HFCs on atmospheric temperature, circulation and stratospheric chemistry

High scenario, Velders et al. (2009) & Business-as-usual scenario, Miller and Kuijpers (2011)

HFCs Contribute to 2050 Atmospheric Change

Mitigation Scenarios Reduce Future HFC Emissions

SSP3 and SSP5 scenarios, Velders et al. (2015) & Business-as-usual scenario, Miller and Kuijpers (2011)

Mitigation Scenarios Reduce Future HFC Impacts

0.05

0.0

2050

If all HFC emissions were to stop by 2040...

47% of HFC emissions avoided

2030

2035

2040

2045

2025

0.05

0.0

2015

2020

~1/3 of upper tropospheric warming avoided

~1/3 of lower stratospheric warming avoided

Mitigation Scenarios Reduce Future HFC Impacts

If all HFC emissions were to stop by 2030...

77% of HFC emissions avoided

>90% of upper tropospheric warming avoided

>90% of lower stratospheric warming avoided

Mitigation Scenarios Reduce Future HFC Impacts

If all HFC emissions were to stop by 2020...

95% of HFC emissions avoided

>99% of upper tropospheric warming avoided

>99% of lower stratospheric warming avoided

Kigali Amendment Reduces HFC Radiative Forcing

Kigali Amendment added to the Montreal Protocol in October 2016

~50% reduction in HFC radiative forcing in 2050

HFC Proxy Suggests Response Similar to CO₂

 Sensitivity simulations with the ocean-atmosphere GEOS chemistryclimate model (updated from Li et al., 2016)

Interactive stratospheric chemistry

No HFCs

Annual Mean Surface Warming

Hurwitz et al.

HFC Climate Impacts

HFC Proxy Suggests Response Similar to CO₂

- Sensitivity simulations with the ocean-atmosphere GEOS chemistryclimate model (updated from Li et al., 2016)
- Interactive stratospheric chemistry

Response pattern indicates enhanced Brewer-Dobson circulation

Planned GEOSCCM simulations will quantify the surface climate impacts of HFCs

Summary

- HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere
- HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change
 - More than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030
- Sensitivity simulations suggest that HFCs warm the surface and enhance the Brewer-Dobson circulation, similarly to ${\rm CO}_2$
- Kigali Amendment to the Montreal Protocol is designed to reduce the anticipated radiative forcing by HFCs