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Background & Motivation Mean Hydrologic Cycle Precipitation Extremes

Aquaplanets—global climate models devoid of land

Precipitation exceedance probabilities (‘‘extremes’’

Time mean zonal mean precipitation
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* Physics: CAM4, CAMS*, and CAM6#
* Grid resolution: 1° & 2° (physics-dependent vertical resolution)
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show increased extratropical P;
(prototype) CAMO6 has remark-
able intensification of ITCZ;
CAMS shows enhanced subtropi-
cal P.
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PR I B A e Prototype CAMG6 (right) shows improved consolidation of power in MJO spectral re-
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e Dynamical core: Finite volume
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e Solar: Perpetual equinox; diurnal cycle retained

Climate Change

Ocean types (all aspects are zonally uniform and equatorially symmetric):

+ Fixed-SST — (1) present-day CO, with QOBS? SST profile (“CTL"), (2) = B LT RO KDy ENES B MO B ALy rares

4xCO, with with QOBS SST, (3) present-day CO; with QOBS SST+4K A oS (o) 1 S8TsaK e CAMBG has excessive MJO power for prescribed SST+4K relative to CAM4/5 (omitted)
e Slab ocean (SOM) — using Q-fluxes computed from corresponding fixed- Precipitation amount and frequency distributions

SST run and a globally constant 30 m mixed-layer depth: Present-day CO» P frequency vs. P rate: 40°S-40°N ConviTot P ratio vs. P rate: 40°S-40°N Key Findin gs & Next Steps

("CTL"), abrupt 4xCO2, COz increased at 1%/year and capped at 4xCO2 :z ; CI R Eé}%ﬁ”;ﬁ;{ffsw s o CAMAfiKSST 1 Aquaplanet ITCZ narrows, consolidates, intensifies from CAM4 to CAMS to CAM6

——— CAMS fixSST 1°

CCSM4 AMIP 1° (11.1%) s CAMB fixSST 1
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—— CAMS5 fixSST 1° (4.6%)
CESM1 AMIP 1° ( 9.0%)
—— CAMB fixSST 1° (13.2%)
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* MG 1 microphysics with constant cloud liquid and ice crystal number concentrations used for simplicity Continued overabundance of drizzle in all CAM versions, but drizzle peak somewhat

N
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# MG2 microphysics with constant cloud liquid and ice crystal number concentrations used for simplicity;

reduced from CAMS to CAMG6; drizzle peak linked to convective rain, not grid-scale

@f dayf with < 0.03 mm rain_>
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multi-decadal SOM climate runs delayed, awaiting final changes to CESM2 model
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Extreme precipitation in tropics: Prototype CAMG6 highly sensitive to warming

Convective-to-total P ratio
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CAM physics package comparison:

Present-day climate results published in: Benedict, Clement, Medeiros, Pendergrass,
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Convection - deep M w/dilute CAPE & CMT  ZM w/dilute CAPE & CMT  ZM w/dilute CAPE & CMT * (Above left) Aquaplanet precipitation frequency generally follows Earth-like CAM Next: Examine CAM6 aquaplanet SOM; run experiments to explore physics-depen-

versions; Earth-like CAM overpredicts light P (<10 mm/d); aquaplanets exaggerate dent ITCZ differences; investigate extreme P event characteristics and tropical-extra-
Convection - shallow Hack UW - Park & Bretherton CLUBB this but have similar distribution to Earth-like models tropical interactions across model hierarchy
Microphysics RK MG1 (diag. precipitation) ~ MG2 (prog. precipitation) e (Above left) Dearth of “dry” days in CAM linked to surface moisture availability R EFERENCES
Turbulence Dry Moist - Bretherton & Park CLUBB rather than biases in large—scale dynamlcs (IlOt ShOWD); SOme 1mpr0vement i CAMG6 1 Hdeid(,loli. é\;[g/fg()fnglg AGl\e/llps gegjxl/eirll;i;nulation and Understanding in Climate Modeling. Bull. Amer. Meteor. Soc., 86, 1609-1614. doi: http://

o ¢ (AbOVe rlght) Overabundant drizzle linked to convective pl‘eCipitatiOIl; extreme pre- 2 Neale, R., and B. Hoskins, 2002: A Standard Test for AGCMs Including Their Physical Parameterizations: I: The Proposial. Atmos. Sci. Lett.,

Radiation RRTMG RRTMG L _ o 1(2), 101-107, doi:10.1006/asle.2000.0022.

cipitation linked to resolved-scale processes; CAMO6 has similar profile to CAMS

3 O’Gorman, P. A., 2015: Precipitation Extremes Under Climate Change. Current Climate Change Reports, 1, 49-59, doi:10.1007/
s40641-015-0009-3.
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