Sill-Controlled Circulation in Ice Shelf Cavities
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Research Overview Uniform PV theory Theoretical Predictions/Limitations - Presence of a sill weakens overall circulation
strength and increases baroclinicity.
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In the wide channel limit (L; << W), uniform PV is only a reasonable assumption within the lateral ’
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= Warm, salty water in bottom layer flows over sill - drag coeff. Io;scale (1078 m/s)2 o
and is transformed into cold, fresh water as it About the Model Numerical Results

Figure 5: Flow rate vs. drag and sill height.

comes into contact with ice shelf and exits in top

layer (Ret. 1,2,3). - Back of the Envelope Ocean Model (BEOM) is a rezeams r=sedmis _r=fesms . r=Se3ms

+ Pine Island Glacier (PIG) is one of the most numerical shallow water isopycnal model (see N
rapidly retreating glaciers due to warm CDW ref. 5). | s

modulated by topography. ]
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Summary and Future Work

= A rich range of behavior is observed in 2-layer
exchange flows depending on cavity shape
and drag.

= Circulation strength is strongly sill-controlled,
but rather insensitive to drag.

= Simulates rotating basins with a free surface/rigid
lid, wetting/drying, and hydrostatic layered
stratification.
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= Setup includes 2 layers with bottom topography, a
rigid lid and upstream/downstream buoyancy
forcing.
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= Future work will explore these dynamics in
"o hydraulically-controlled and layer-outcropping
regimes.
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Figure 3: 20 day time-avg. bottom layer PV with velocity quiv-
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Figure 1: Pine Island Glacier location and geometry. Credit:

Rignot et al. 2002 (Ref. 1) and NASA (Ref. 4).
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Figure 2: Example of model setup geometry.
Figure 4: Same as fig. 3 for top layer PV.



